精英家教网 > 高中数学 > 题目详情
15.若三点A(3,3),B(a,0).C(0,b)(ab≠0)共线,则log3($\frac{1}{a}$+$\frac{1}{b}$)=-1.

分析 利用三点共线求出a、b关系,然后求解表达式的值.

解答 解:三点A(3,3),B(a,0).C(0,b)(ab≠0)共线,
$\overrightarrow{AB}$=(a-3,-3),$\overrightarrow{AC}$=(-3,b-3),
可得:(a-3)(b-3)=9.,即ab=3(a+b).
log3($\frac{1}{a}$+$\frac{1}{b}$)=log3($\frac{a+b}{ab}$)=log3$\frac{1}{3}$=-1.
故答案为:-1.

点评 本题考查对数运算法则的应用,向量共线的充要条件,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.对任意实数x都有mx2+mx+1>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某人外出参加活动,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.1,0.4,0.2,他不乘轮船去的概率是0.9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数fA(x)的定义域为A=[a,b),且fA(x)=($\frac{x}{a}$+$\frac{b}{x}$-1)2-$\frac{2b}{a}$+1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整数,对一切正整数k,不等式f${\;}_{I_k}}$(x1)+f${\;}_{{I_{k+1}}}}$(x2))<m都有解,求m的取值范围;
(3)若对任意x1,x2,x3∈A,都有$\sqrt{{f_A}({x_1})}$,$\sqrt{{f_A}({x_2})}$,$\sqrt{{f_A}({x_3})}$为三边长构成三角形,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{3x+6}$-$\sqrt{8-x}$值域为[-$\sqrt{10}$,$\sqrt{30}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的定义域:
(1)y=log3$\frac{1}{2-x}$;
(2)y=$\sqrt{lgx}$+lg(5-3x);
(3)y=log(x-1)(2-x);
(4)y=$\sqrt{lo{g}_{2}(4x-3)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则$\frac{4}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{4}{9}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的取值范围是(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|x>1},N={x|x<5},则集合M∩N=(  )
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

查看答案和解析>>

同步练习册答案