精英家教网 > 高中数学 > 题目详情
1.若集合M={x|x>1},N={x|x<5},则集合M∩N=(  )
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

分析 由M与N,求出两集合的交集即可.

解答 解:∵M={x|x>1},N={x|x<5},
∴M∩N={x|1<x<5}=(1,5),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若三点A(3,3),B(a,0).C(0,b)(ab≠0)共线,则log3($\frac{1}{a}$+$\frac{1}{b}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D是边AC的中点,若A=$\frac{π}{3}$,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,△ABC面积为3$\sqrt{3}$,则sin∠ABD=$\frac{3\sqrt{21}}{14}$,边长BC=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-x-2>0},B={x|y=ln(1-x)},则(∁RA)∩B=(  )
A.a,b,cB.(1,2]C.[-1,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数g(x)=ax2-2ax+b(a>0)在区间[1,3]上有最大值5,最小值1;设$f(x)=\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若$f(|lgx-1|)+k•\frac{2}{|lgx-1|}-3k≥1$对任意x∈[1,10)∪(10,100]恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mlnx+2nx2+x(x>0,m∈R,n∈R).
(1)若曲线y=f(x)在(1,f(1))处的切线方程为2x+y-1=0,求f(x)的递增区间;
(2)若m=1,是否存在n∈R,使f(x)的极值大于零?若存在,求出n的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图程序框图,则输出的A是$\frac{70}{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=3$\sqrt{x}$+$\frac{32}{9x}$的最小值是(  )
A.24B.6$\sqrt{2}$C.6$\sqrt{3}$D.6

查看答案和解析>>

同步练习册答案