精英家教网 > 高中数学 > 题目详情
9.在△ABC中,D是边AC的中点,若A=$\frac{π}{3}$,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,△ABC面积为3$\sqrt{3}$,则sin∠ABD=$\frac{3\sqrt{21}}{14}$,边长BC=2$\sqrt{7}$.

分析 设AB=c、AC=b、BC=a,由三角形的面积公式求出 bc的值,由诱导公式和平方关系求出cos∠ADB、sin∠ADB,由两角和的正弦公式求出sin∠ABD;在△ABD中由正弦定理和bc的值求出c2、b2,在△ABC中由余弦定理求出BC的长.

解答 解:如图所示:设AB=c、AC=b、BC=a,
∵D是边AC的中点,∴AD=DC=$\frac{1}{2}b$,
∵A=$\frac{π}{3}$,△ABC面积为3$\sqrt{3}$,∴$\frac{1}{2}bcsinA=3\sqrt{3}$,
则$\frac{1}{2}×\frac{\sqrt{3}}{2}bc=3\sqrt{3}$,得bc=12,
∵∠ADB+∠BDC=π,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,∴cos∠ADB=$\frac{2\sqrt{7}}{7}$,
由∠ADB∈(0,π)得,sin∠ADB=$\sqrt{1-co{s}^{2}∠ADB}$=$\frac{\sqrt{21}}{7}$,
在△ABD中,sin∠ABD=sin(∠ADB+A)
=sin∠ADBcosA+cos∠ADBsinA
=$\frac{\sqrt{21}}{7}$×$\frac{1}{2}+$$\frac{2\sqrt{7}}{7}$×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{21}}{14}$,
在△ABD中,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sin∠ABD}$,
∴$\frac{c}{\frac{\sqrt{21}}{7}}$=$\frac{\frac{b}{2}}{\frac{3\sqrt{21}}{14}}$,化简得b=3c,
代入bc=12得,c2=4、b2=36,
在△ABC中,由余弦定理得,BC2=AB2+AC2-2•AB•AC•cosA
=c2+b2-bc=4+36-12=28,
∴BC═2$\sqrt{7}$,(9分),
故答案为:$\frac{3\sqrt{21}}{14}$;2$\sqrt{7}$.

点评 本题考查正弦定理、余弦定理,两角和的正弦公式,以及三角形的面积公式,考查化简、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若函数fA(x)的定义域为A=[a,b),且fA(x)=($\frac{x}{a}$+$\frac{b}{x}$-1)2-$\frac{2b}{a}$+1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整数,对一切正整数k,不等式f${\;}_{I_k}}$(x1)+f${\;}_{{I_{k+1}}}}$(x2))<m都有解,求m的取值范围;
(3)若对任意x1,x2,x3∈A,都有$\sqrt{{f_A}({x_1})}$,$\sqrt{{f_A}({x_2})}$,$\sqrt{{f_A}({x_3})}$为三边长构成三角形,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的取值范围是(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.
(1)证明:AE∥平面BCD;
(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为$\frac{{\sqrt{2}}}{4}$,试问在CA上是否存在一点P,使得二面角P-BE-A的余弦值为$\frac{{\sqrt{10}}}{4}$.若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,设Tn=a1a2…an,n∈N*,则(  )
A.若T2n+1>0,则a1>0B.若T2n+1<0,则a1<0
C.若T3n+1<0,则a1>0D.若T4n+1<0,则a1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,写出程序框图描述的算法的运行结果(  )
A.-5B.5C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|x>1},N={x|x<5},则集合M∩N=(  )
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=1-\frac{{m{e^x}}}{{{x^2}+x+1}}$,若存在唯一的正整数x0,使得f(x0)≥0,则实数m的取值范围为(  )
A.$[\frac{13}{e^3},\frac{7}{e^2}]$B.$(\frac{13}{e^3},\frac{7}{e^2}]$C.$[\frac{7}{e^2},\frac{3}{e}]$D.$(\frac{7}{e^2},\frac{3}{e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ为参数),曲线C2:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t-\sqrt{2}}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数).
(1)指出C1,C2各是什么曲线;
(2)求曲线C1与C2公共点M的坐标.

查看答案和解析>>

同步练习册答案