精英家教网 > 高中数学 > 题目详情
20.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的取值范围是(0,3].

分析 求函数的导数,利用函数单调性和导数的关系转化为f′(x)≥0在[1,+∞)上恒成立即可.

解答 解:∵函数f(x)=x3-ax在[1,+∞)上是单调递增函数,
∴f′(x)≥0在[1,+∞)上恒成立,
即f′(x)=3x2-a≥0在[1,+∞)上恒成立,
即a≤3x2在[1,+∞)上恒成立,
∵3x2≥3,
∴0<a≤3,
即实数a的取值范围是(0,3],
故答案为:(0,3].

点评 本题主要考查函数单调性的应用,求函数的导数,利用函数单调性和导数之间的关系转化f′(x)≥0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(x,-3),且$\overrightarrow a$∥$\overrightarrow b$,则|$\overrightarrow a$+2$\overrightarrow b}$|=(  )
A.10B.$\sqrt{5}$C.5D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若三点A(3,3),B(a,0).C(0,b)(ab≠0)共线,则log3($\frac{1}{a}$+$\frac{1}{b}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:
(1)已知tanα=3,求$\frac{2cosα}{sinα+cosα}$的值;
(2)3${\;}^{lo{g}_{3}4}$-27${\;}^{\frac{2}{3}}$-lg0.01+lne3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某市高三学生身高情况,对全市高三学生进行了测量,经分析,全市高三学生身高X(单位:cm)服从正态分布N(160,ξ2),已知P(X<150)=0.2,P(X≥180)=0.03.
(1)现从该市高三学生中随机抽取一位学生,求该学生身高在区间[170,180)的概率;
(2)现从该市高三学生中随机抽取三位学生,记抽到的三位学生身高在区间[150,170)的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.岳阳市上年度水价为0.8元/吨.月用水量为a吨.本月计划将水价降到0.55元/吨至0.75元/吨之间,而用户期望的水价为0.4元/吨,经测算,下调水价后新增的用水量与实际水价和用户期望的水价的差成反比(比例系数为k)而我市水价的成本为0.3元/吨.
(1)写出本月水价下调后,供水局的收益y与实际水价x的函数关系式;
(2)设k=0.2a,当水价最低定为多少时仍旧可以保持供水局的收益比上年至少增加20%?(收益=实际用水量×(实际水价-成本价)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求证:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D是边AC的中点,若A=$\frac{π}{3}$,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,△ABC面积为3$\sqrt{3}$,则sin∠ABD=$\frac{3\sqrt{21}}{14}$,边长BC=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图程序框图,则输出的A是$\frac{70}{29}$

查看答案和解析>>

同步练习册答案