精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=mlnx+2nx2+x(x>0,m∈R,n∈R).
(1)若曲线y=f(x)在(1,f(1))处的切线方程为2x+y-1=0,求f(x)的递增区间;
(2)若m=1,是否存在n∈R,使f(x)的极值大于零?若存在,求出n的取值范围;若不存在,请说明理由.

分析 (1)求出函数的导数,得到关于m,n的方程组,求出m,n的值,从而求出f(x)的表达式,解关于导函数的不等式,求出函数的递增区间即可;
(2)求出f(x)的导数,通过讨论n的范围,得到n≥0时,不合题意,n<0时,问题转化为求使f(x2)>0的实数m的取值范围,构造函数g(x)=lnx+$\frac{x-1}{2}$,求出g(x)的单调性,从而求出n的范围即可.

解答 解:(1)由题意得:f′(x)=$\frac{m}{x}$+4nx+1,f′(1)=1+m+4n,
由f(1)=-1,得:k=-2,
∴$\left\{\begin{array}{l}{f′(1)=1+m+4n=-2}\\{f(1)=2n+1=-1}\end{array}\right.$,解得:m=1,n=-1,
∴f(x)=lnx-2x2+x,
∴f′(x)=$\frac{-{4x}^{2}+x+1}{x}$(x>0),
令f′(x)>0,解得:0<x<$\frac{1+\sqrt{17}}{8}$,
∴f(x)在(0,$\frac{1+\sqrt{17}}{8}$)递增;
(2)由题意得:f(x)=lnx+2nx2+x,f′(x)=$\frac{4{nx}^{2}+x+1}{x}$(x>0),
①n≥0时,f′(x)>0在(0,+∞)恒成立,故无极值,
②n<0时,令f′(x)=0,得:4nx2+x+1=0,则△=1-16n>0,x1x2=$\frac{1}{4n}$<0,
不妨设x1<0,x2>0,则f′(x)=$\frac{4n(x{-x}_{1})(x{-x}_{2})}{x}$,即求使f(x2)>0的实数m的取值范围,
由$\left\{\begin{array}{l}{4{{nx}_{2}}^{2}{+x}_{2}+1=0}\\{l{nx}_{2}+2{{nx}_{2}}^{2}{+x}_{2}>0}\end{array}\right.$,得:lnx2+$\frac{{x}_{2}-1}{2}$>0,
构造函数g(x)=lnx+$\frac{x-1}{2}$,则g′(x)=$\frac{1}{x}$+$\frac{1}{2}$>0,
∴g(x) 在(0,+∞)递增,
由g(1)=0,由g(x)>0,解得:x>1,
即x2=$\frac{-1-\sqrt{1-16n}}{8n}$>1,解得:-$\frac{1}{2}$<n<0,
由①②得:n∈(-$\frac{1}{2}$,0).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则$\frac{4}{a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{4}{9}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,设Tn=a1a2…an,n∈N*,则(  )
A.若T2n+1>0,则a1>0B.若T2n+1<0,则a1<0
C.若T3n+1<0,则a1>0D.若T4n+1<0,则a1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|x>1},N={x|x<5},则集合M∩N=(  )
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在下面给出的四个函数中,既是区间(0,$\frac{π}{2}$)上的增函数,又是以π为周期的偶函数的是(  )
A.y=sinxB.y=sin2xC.y=|cosx|D.y=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=1-\frac{{m{e^x}}}{{{x^2}+x+1}}$,若存在唯一的正整数x0,使得f(x0)≥0,则实数m的取值范围为(  )
A.$[\frac{13}{e^3},\frac{7}{e^2}]$B.$(\frac{13}{e^3},\frac{7}{e^2}]$C.$[\frac{7}{e^2},\frac{3}{e}]$D.$(\frac{7}{e^2},\frac{3}{e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{a{e^x}}}{x^2}$(a≠0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=f(x)-$\frac{2}{x}$-lnx,若g(x)在区间(0,2)上有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算:$\int_{-2}^1$|x|dx=(  )
A.-1B.1C.-$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三棱锥P-ABC,PA、PB、PC两两垂直,PA=PB=PC=$\sqrt{2}$,此三棱锥的内切球的半径为$\frac{3\sqrt{2}-\sqrt{6}}{6}$.

查看答案和解析>>

同步练习册答案