精英家教网 > 高中数学 > 题目详情

已知都是实数,且
(1)求不等式的解集;
(2)若对满足条件的所有实数都成立,求实数的取值范围.

(1) (2)

解析试题分析: (1)首先把含有绝对值的函数转化为分段函数,再解不等式;(2)利用绝对值不等式的性质即可.
(1)                  2分

解得所以不等式的解集为   4分
(2)      6分
的解为的解为
所求实数的范围为                 8分
考点:分段函数;绝对值不等式的性质,绝对值不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数
(1)当时,的最大值为,求的最小值;
(2)对于任意的,总有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·孝感模拟)已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湛江为建设国家卫生城市,现计划在相距20 km的赤坎区(记为A)霞山区(记为B)两城区外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对市区的影响度与所选地 
点到市区的距离有关,对赤坎区和霞山区的总影响度为两市区的影响度之和,记C点到赤坎区的距离为x km,建在C处的垃圾处理厂对两市区的总影响度为y.统计调查表明:垃圾处理厂对赤坎区的影响度与所选地点到赤坎区的距离的平方成反比,比例系数为4;对霞山区的影响度与所选地点到霞山区的距离的平方成反比,比例系数为k.当垃圾处理厂建在的中点时,对两市区的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到赤坎区的距离;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价,减少进货量的办法来增加利润,已知这种商品每件销售价提高1元,销售量就要减少10件,问该商场将销售价每件定为多少元时,才能使得每天所赚的利润最多?销售价每件定为多少元时,才能保证每天所赚的利润在300元以上?

查看答案和解析>>

同步练习册答案