精英家教网 > 高中数学 > 题目详情
已知△ABC中,顶点A(2,2),边AB上的中线CD所在直线的方程是x+y=0,边AC上的高BE所在直线的方程是x+3y+4=0,求BC所在直线.
考点:直线的一般式方程
专题:直线与圆
分析:先由AB的中点公式求出B点的坐标,再由AC与BE的交点求出C点的坐标,从而求出直线BC的方程.
解答: 解:由题意可设B(-3a-4,a),
则AB的中点D(
-3a-2
2
a+2
2
)必在直线CD上,
-3a-2
2
+
a+2
2
=0,
∴a=0,∴B(-4,0),
又直线AC方程为:
y-2=3(x-2),
即y=3x-4,
x+y=0
y=3x-4
得,
C(1,-1).
则BC所在直线为x+5y+4=0.
点评:本题考查了求直线方程的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1
(Ⅰ) 求证:AB1⊥平面A1BC1
(Ⅱ) 若D为B1C1的中点,求AD与平面A1BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系平面上,若一个点的纵、横坐标都是有理数,则称它为有理点,求满足如下条件的最小正整数k;每一个圆周上含有k个有理点的圆,它的圆周上一定含有无穷多个有理点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F(1,0),经过F与B(0,b)的直线与圆x2+y2=
3
4
相切.
(1)求椭圆C的方程;
(2)过点F的直线l交椭圆于M、N两点,求
FM
FN
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=4x的焦点为F,过F的直线交抛物线于M、N两点,其准线l与x轴交于K点.
(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求|PQ|+|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-3x+2,请设计一个算法,画出算法的程序框图,求f(3)+f(-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、EF、PF,其中PF=2
5

(Ⅰ)求证:PF⊥平面ABED;
(Ⅱ)求直线AP与平面PEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|2x<4},B={x|log
1
2
x>0}

(Ⅰ)求A∩∁UB;
(Ⅱ)若集合C={x|a<x<a+2},且A∪C=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:命题α:-2<x≤4,命题β:-2m+1≤x≤3m-2,若α是β的充分条件,则实数m的范围
 

查看答案和解析>>

同步练习册答案