精英家教网 > 高中数学 > 题目详情
14.复数z=$\frac{{{i^{2012}}}}{{{{(1-i)}^5}}}$的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数代数形式的乘除运算化简求得z,进一步得到$\overline{z}$,则答案可求.

解答 解:∵$z=\frac{{{i^{2012}}}}{{{{(1-i)}^5}}}=\frac{1}{-4+4i}=-\frac{1}{8}-\frac{1}{8}i$,
∴$\overline z=-\frac{1}{8}+\frac{1}{8}i$.
则复数z=$\frac{{{i^{2012}}}}{{{{(1-i)}^5}}}$的共轭复数对应的点的坐标为($-\frac{1}{8},\frac{1}{8}$),位于第二象限.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某种玩具,每个价格为10.25元.买x件玩具所用的钱数为f(x)=10.25x元,此时x的取值范围为(  )
A.RB.ZC.QD.N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1.x≤0}\\{f(x-1),x>0}\end{array}\right.$,则函数y=f(x)-f(-x)的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A(1,-1),B(5,-3),C(4,-5),则表示△ABC的边界及其内部的约束条件是$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x-y-13≤0}\\{4x+3y-1≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知2ex-8≤3恒成立,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的两条渐近线的夹角为$\frac{π}{3}$,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=5-x+$\sqrt{\frac{1}{2}x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定义域上只有一个零点,则实数a的取值范围是(  )
A.a>$\frac{16}{3}$B.a<$\frac{16}{3}$C.a≥$\frac{16}{3}$D.a≤$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|(0<x≤9)}\\{-x+11(x>9)}\end{array}\right.$,若存在实数t使关于x的方程f(x)-t=0有三个不等实根x1,x2,x3,则这三个不等实根的积x1•x2•x3的取值范围是(  )
A.(0,9)B.(2,9)C.(9,11)D.(2,11)

查看答案和解析>>

同步练习册答案