精英家教网 > 高中数学 > 题目详情
1.三视图如图所示的几何体的全面积是(  )
 
A.7+$\sqrt{2}$B.$\frac{11}{2}$+$\sqrt{2}$C.7+$\sqrt{3}$D.$\frac{3}{2}$

分析 由题意,几何体为一个长为2,高和宽都是1的长方体剪去棱长为1的半个正方体,然后计算面积.

解答 解:由题意,几何体为一个长为2,高和宽都是1的长方体剪去棱长为1的半个正方体,所以全面积为$2×1×1+3×2×1-2×\frac{1}{2}×1×1+\sqrt{2}×1$=7$+\sqrt{2}$;
故选A.

点评 本题考查了几何体的三视图;关键是正确还有几何体.考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0),其焦点F到准线的距离为2,直线l与抛物线C相交于不同于原点的两点A,B.
(1)求抛物线C的方程;
(2)若以AB为直径的圆恒过原点O,求证:直线l过定点;
(3)若直线l过抛物线C的焦点F,求△OAB面积的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知曲线f(x)=xsinx+5在x=$\frac{π}{2}$处的切线与直线ax+4y+1=0互相垂直,则实数a的值为(  )
A.-2B.-1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列结论判断正确的是(  )
A.任意两条直线确定一个平面
B.三条平行直线最多确定三个平面
C.棱长为1的正方体的内切球的表面积为4π
D.若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1-$\frac{a}{x}$+ln$\frac{1}{x}$(a为实数).
(1)当a=1时,求函数f(x)的图象在点($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(2)已知n∈N*,求证:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)上任意一点A(x1,y1)处的切线l1,在其图象上总存在异与点A的点B(x2,y2),使得在B点处的切线l2满足l1∥l2,则称函数具有“自平行性”.下列有关函数f(x)的命题:
①函数f(x)=sinx+1具有“自平行性”;
②函数f(x)=x3(-1≤x≤2)具有“自平行性”;
③函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-1(x<0)}\\{x+\frac{1}{x}(x>m)}\end{array}\right.$具有“自平行性”的充要条件为实数m=1;
④奇函数y=f(x)(x≠0)不一定具有“自平行性”;
⑤偶函数y=f(x)具有“自平行性”.
其中所有叙述正确的命题的序号是(  )
A.①③④B.①④⑤C.②③④D.①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=log2(-x2+ax) 的图象过点(2,2),则函数f(x) 的值域为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某厂在计划期内要安排生产甲、乙两种产品,这些产品分别需要在A、B、C、D四种不同的设备上加工,按工艺规定,产品甲和产品乙在各设备上需要的加工台时数于下表给出.已知各设备在计划期内有效台时数分别是12,8,16,12(一台设备工作一小时称为一台时),该厂每生产一件产品甲可得利润2元,每生产一件产品乙可得利润3元,问应如何安排生产计划,才能获得最大利润??
  设备
产品
ABCD
2140
2204

查看答案和解析>>

同步练习册答案