精英家教网 > 高中数学 > 题目详情
9.下列结论判断正确的是(  )
A.任意两条直线确定一个平面
B.三条平行直线最多确定三个平面
C.棱长为1的正方体的内切球的表面积为4π
D.若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ

分析 根据平面的基本性质与推论,对选项中的命题进行分析、判断正误即可.

解答 解:对于A,两条异面直线不能确定一个平面,原命题错误;
对于B,三条平行直线在一个平面内时,确定一个平面,
当三条平行直线不在同一个平面时,确定三个平面;故原命题正确;
对于C,棱长为1的正方体的内切球半径为$\frac{1}{2}$,
它的表面积为4π•${(\frac{1}{2})}^{2}$=π,故原命题错误;
对于D,当平面α⊥平面β,平面β⊥平面γ时,平面α∥平面γ,或平面α∩平面β,
如三棱柱的两个侧面与底面都垂直,但这两个侧面相交,故原命题错误.
故选:B.

点评 本题考查了平面基本性质与推论的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f1(x)=|x-1|,f2(x)=$\frac{1}{3}$x+1,g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$+$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,若a,b∈[-1,5],且当x1,x2∈[a,b](x1≠x2)时,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,则b-a的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sinx+acosx(a∈R)图象的一条对称轴是x=$\frac{π}{4}$,则函数g(x)=sinx+f(x)的最大值为(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(2002)=3,则f(2003)的值是(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=4cosωxsin(ωx+$\frac{2π}{3}$)-$\sqrt{3}$的最小正周期为π.
(1)求f(x)在[-π,π]上的单调增区间;
(2)若存在x∈[0,$\frac{π}{6}$],使f(x-$\frac{π}{4}$)>|m-2|成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某射手射击1次,击中目标的概率是0.8,他连续射击4次,有各次射击是否击中目标相互之间没有影响.有下列结论:
(1)第二次击中目标的概率是0.8;
(2)恰好击中目标三次的概率是0.83×0.2;
(3)至少击中目标一次的概率是1-0.24
其中正确的结论的序号是①③ (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三视图如图所示的几何体的全面积是(  )
 
A.7+$\sqrt{2}$B.$\frac{11}{2}$+$\sqrt{2}$C.7+$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=($\frac{1}{2}$)x.若存在x0∈[$\frac{1}{2}$,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是[2$\sqrt{2}$,$\frac{5}{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线x=t与函数f(x)=lnx和g(x)=a+ax-x2的图象分别交于M、N两点,O为坐标原点,当直线OM、ON的斜率之差kOM-kON在区间t∈[1,+∞)上单调递增时,实数a的取值范围为(  )
A.[-2,+∞)B.(-∞,-2]C.(-2,+∞)D.(-2,2)

查看答案和解析>>

同步练习册答案