精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A、B、C所对的边分别为a、b、c,b(b-
3
c)=(a-c)(a+c),且角B为钝角.
(1)求角A的大小;
(2)若a=
1
2
,求b-
3
c的取值范围.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)由条件利用余弦定理求得cosA=
b2+c2-a2
2bc
 的值,可得A的值.
(2)由正弦定理可得b-
3
c=-sin(B+
π
3
),根据角B为钝角,且B<π-A,可得B+
π
3
的范围,再根据正弦函数的定义域和值域,求得b-
3
c的取值范围.
解答: 解:(1)在△ABC中,由b(b-
3
c)=(a-c)(a+c),可得b2+c2-a2=
3
bc,
故由余弦定理可得cosA=
b2+c2-a2
2bc
=
3
2
,∴A=
π
6

且角B为钝角.
(2)∵a=
1
2
,A=
π
6
,由正弦定理可得
a
sinA
=2r,即2r=
1
2
sin
π
6
=1(r为三角形外接圆的半径),且 B+C=
6

故b-
3
c=sinB-
3
sinC=sinB-
3
sin(
6
-B)=sinB-
3
(sin
6
cosB-cos
6
sinB)
=-
1
2
sinB-
3
2
cosB=-sin(B+
π
3
),
根据角B为钝角,且B<π-A=
6
,可得B+
π
3
∈(
6
6
),
故sin(B+
π
3
)∈(-
1
2
1
2
),故-sin(B+
π
3
)∈(-
1
2
1
2
),
即b-
3
c的取值范围为(-
1
2
1
2
).
点评:本题主要考查正弦定理和余弦定理的应用,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设非零向量向量
OA
=
a
OB
=
b
,已知|
a
|=2|
b
|,(
a
+
b
)⊥
b

(1)求
a
b
的夹角;
(2)在如图所示的直角坐标系xOy中,设B(1,0),已知
M(
1
2
5
3
6
),
OM
1
a
2
b
(λ1,λ2∈R),求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,在Rt△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC,垂足为E,连接EA交⊙O于点F.求证:
(Ⅰ)DE是⊙O的切线;
(Ⅱ)BE•CE=EF•EA.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列随机变量中,不是离散型随机变量的是
 

①某地车展中,预定各类汽车的总人数X;
②北京故宫某周每天接待的游客人数;
③正弦曲线上的点P到x轴的距离X;
④小麦的亩产量X;
⑤王老师在一次英语课上提问的学生人数X.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,圆O的直径AB=6.C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D,E,则线段AE的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:(1)cosθ+cosφ=2cos
θ+φ
2
•cos
θ-φ
2

     (2)3+cos4α-4cos2α=8sin4α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn,且2
Sn
=an十1,n∈N*
(1)试求数列{an}的通项公式,
(2)设bn=
1
anan+1
,数列{bn}的前n项和为Bn,求证:Bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x-2cos2x+3.求:
①函数的最大值及取得最大值时x值的集合;
②函数的单调递增区间;
③满足f(x)>3的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的部分图象如图所示,则f(x)的解析式为(  )
 
A、f(x)=x+sinx
B、f(x)=
cosx
x
C、f(x)=xcosx
D、f(x)=x(x-
π
2
)(x-
2

查看答案和解析>>

同步练习册答案