精英家教网 > 高中数学 > 题目详情
10.设E(X)=10,E(Y)=3,则E(3X+5Y)=(  )
A.45B.40C.30D.15

分析 利用离散型随机变量的数学期望的计算公式直接计算.

解答 解:∵E(X)=10,E(Y)=3,
∴E(3X+5Y)=E(3X)+E(5Y)
=3E(X)+5E(Y)
=3×10+5×3
=45.
故选:A.

点评 本题考查离散型随机变量的数学期望的求法,是基础题,解题时要认真审题,注意数学期望计算公式的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点$(0,2\sqrt{3})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若k1=$\frac{3}{4}{k_2}$,证明:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=cos2x-2cosx+1的最小值和最大值分别是(  )
A.-$\frac{1}{2}$,4B.0,4C.-$\frac{1}{4}$,2D.0,2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F(1,0),过F1的直线l与椭圆C相交于A,B两点,且△ABF2的周长为4$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(4,0)作与直线l平行的直线m,且直线m与抛物线y2=4x交于P、Q两点,若A、P在x轴上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=sin(ωx+\frac{π}{4})+cos(ωx+\frac{5π}{12})(ω>0)$的最小正周期为4π.
(Ⅰ)求ω的值
(Ⅱ)设${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$,求|f(x1)-f(x2)|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设F1、F2是双曲线x2-$\frac{{y}^{2}}{24}$=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的周长24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某种书每册的成本费y(元)与印刷册数x(千册)有关,经统计得到的数据如下:
x123510203050100200
y10.155.524.082.852.111.621.411.301.211.15
检验每册书的成本费y与印刷册数x间具有什么样的相关关系,求出y对x的回归方程,并判断回归方程拟合的效果.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图摩天轮半径10米,最低点A离地面0.5米,已知摩天轮按逆时针方向每3分钟转一圈(速率均匀),人从最低点A上去且开始计时,则t分分钟后离地面10sin($\frac{2}{3}π$t$-\frac{π}{2}$)+10.5或10.5-10cos($\frac{2}{3}$πt)米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班甲、乙两个活动小组各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生1号2号3号4号5号
甲组65798
乙组48977
(Ⅰ)从统计数据看,甲乙两个组哪个组成绩更稳定(用数据说明)?
(Ⅱ)若把上表数据对应的频率作为学生投篮命中率,规定两个小组的1号和2号同学分别代表自己的小组参加比赛,每人投篮一次,将甲活动小组两名同学投中的次数之和记作X,试求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案