18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-1£¬0£©¡¢F£¨1£¬0£©£¬¹ýF1µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª4$\sqrt{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµã£¨4£¬0£©×÷ÓëÖ±ÏßlƽÐеÄÖ±Ïßm£¬ÇÒÖ±ÏßmÓëÅ×ÎïÏßy2=4x½»ÓÚP¡¢QÁ½µã£¬ÈôA¡¢PÔÚxÖáÉÏ·½£¬Ö±ÏßPAÓëÖ±ÏßQBÏཻÓÚxÖáÉÏÒ»µãM£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì¼´ÊÇÇóaºÍb£¬¸ù¾Ý¡÷ABF2µÄÖܳ¤Îª4a£¬Çó³öa£¬ÔÚ¸ù¾Ý½¹µã×ø±êÇó³öc£¬ÄÇôb¾Í¿ÉÒÔÇó³ö£®
£¨¢ò£©Éè³öABPQËĵãµÄ×ø±ê£¬¸ù¾ÝÈý½ÇÐεÄÏàËÆ±ÈµÃËüÃÇ×Ý×ø±êµÄ¹ØÏµ£¬¸ù¾ÝÖ±ÏßlÓëÍÖÔ²·½³ÌµÃµ½Ê½¢Ù£¬ÔÙ¸ù¾ÝÖ±ÏßmÓëÅ×ÎïÏß·½³ÌµÃµ½Ê½¢Ú£¬×îÖյõ½l·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬4a=4$\sqrt{2}$£¬a2-b2=1      ¡­£¨2·Ö£©
ËùÒÔa=$\sqrt{2}$£¬b=1                                         ¡­£¨3·Ö£©
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$                                         ¡­£¨4·Ö£©
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬PQÓëxÖáµÄ½»µã¼ÇΪµãN
Ö±ÏßlµÄ·½³ÌΪx=ty-1£¬Ö±ÏßmµÄ·½³ÌΪ£ºx=ty+4 
ÒÀÌâÒâµÃ$\frac{A{F}_{1}}{PN}$=$\frac{M{F}_{1}}{MN}$=$\frac{B{F}_{1}}{QN}$
Ôò$\frac{|{y}_{1}|}{|{y}_{3}|}$=$\frac{|{y}_{2}|}{|{y}_{4}|}$£¬¿ÉµÃ$\frac{{y}_{1}}{{y}_{2}}=\frac{{y}_{3}}{{y}_{4}}$£¬Áî$\frac{{y}_{1}}{{y}_{2}}=\frac{{y}_{3}}{{y}_{4}}$=¦Ë£¨¦Ë£¼0£©£¬¡­£¨5·Ö£©
ÓÉ$\left\{\begin{array}{l}{x=ty-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$ ÏûÈ¥x£¬µÃ£¨t2+2£©y2-2ty-1=0£¬¡­£¨6·Ö£©
Ôò$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{2t}{{t}^{2}+2}}\\{{y}_{1}{y}_{2}=-\frac{1}{{t}^{2}+2}}\end{array}\right.$£¬°Ñy1=¦Ëy2´úÈëÕûÀíµÃ£º$\frac{£¨1+¦Ë£©^{2}}{¦Ë}$=-$\frac{4{t}^{2}}{{t}^{2}+2}$¢Ù¡­£¨8·Ö£©
ÓÉ$\left\{\begin{array}{l}{x=ty+4}\\{{y}^{2}=4x}\end{array}\right.$ ÏûÈ¥x£¬µÃy2-4ty-16=0£¬¡­£¨9·Ö£©
Ôò$\left\{\begin{array}{l}{{y}_{3}+{y}_{4}=4t}\\{{y}_{3}{t}_{4}=-16}\end{array}\right.$£¬°Ñy3=¦Ëy4´úÈ룬ÕûÀíµÃ£º$\frac{£¨1+¦Ë£©^{2}}{¦Ë}$=-t2¢Ú¡­£¨10·Ö£©
ÓÉ¢Ù¢ÚÏûÈ¥¦Ë£¬µÃ$\frac{4{t}^{2}}{{t}^{2}+2}$=t2£¬½âµÃt=0»òt=$¡À\sqrt{2}$         ¡­£¨11·Ö£©
¹ÊÖ±ÏßlµÄ·½³ÌΪ£ºx=-1»òx-$\sqrt{2}$y+1=0 »òx+$\sqrt{2}$y+1=0    ¡­£¨12·Ö£©
¹Ê´ð°¸Îª£ºÖ±ÏßlµÄ·½³ÌΪ£ºx=-1»òx-$\sqrt{2}$y+1=0 »òx+$\sqrt{2}$y+1=0

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ»ù±¾ÐÔÖÊ¡¢Ö±Ïß·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄ½»µã¡¢Ö±ÏßÓëÅ×ÎïÏß½»µã¡¢Æ½ÐÐÖ±ÏßµÄÐÔÖÊ£¬¶ÔѧÉúµÄ×ÛºÏÄÜÁ¦ÓкܸߵÄÒªÇó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬ÇÒÂú×ãf£¨x£©+xf¡ä£¨x£©=$\frac{lnx}{x}$£¬f£¨e£©=$\frac{1}{e}$ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©Óм«´óÖµÎÞ¼«Ð¡ÖµB£®f£¨x£©Óм«Ð¡ÖµÎÞ¼«´óÖµ
C£®f£¨x£©¼ÈÓм«´óÖµÓÖÓм«Ð¡ÖµD£®f£¨x£©Ã»Óм«Öµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô´æÔÚÖ±ÏßlÓëÇúÏßC1ºÍÇúÏßC2¶¼ÏàÇУ¬Ôò³ÆÇúÏßC1ºÍÇúÏßC2Ϊ¡°Ïà¹ØÇúÏß¡±£¬ÓÐÏÂÁÐËĸöÃüÌ⣺
¢ÙÓÐÇÒÖ»ÓÐÁ½ÌõÖ±ÏßlʹµÃÇúÏßC1£ºx2+y2=4ºÍÇúÏßC2£ºx2+y2-4x+2y+4=0Ϊ¡°Ïà¹ØÇúÏß¡±£»
¢ÚÇúÏßC1£ºy=$\frac{1}{2}\sqrt{{x^2}+1}$ºÍÇúÏßC2£ºy=$\frac{1}{2}\sqrt{{x^2}-1}$ÊÇ¡°Ïà¹ØÇúÏß¡±£»
¢Ûµ±b£¾a£¾0ʱ£¬ÇúÏßC1£ºy2=4axºÍÇúÏßC2£º£¨x-b£©2+y2=a2Ò»¶¨²»ÊÇ¡°Ïà¹ØÇúÏß¡±£»
¢Ü±Ø´æÔÚÕýÊýaʹµÃÇúÏßC1£ºy=alnxºÍÇúÏßC2£ºy=x2-xΪ¡°Ïà¹ØÇúÏß¡±£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\sqrt{3}$sinx£¬1-$\sqrt{3}$cosx£©£¬$\overrightarrow{n}$=£¨1-sinx£¬cosx£©£¬º¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$+$\sqrt{3}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄÁãµã£»
£¨¢ò£©Èôf£¨¦Á£©=$\frac{8}{5}$£¬ÇÒ¦Á¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬Çócos¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ä³Ñ§Ð£¹²ÓÐʦÉú2400ÈË£¬ÏÖÓ÷ֲã³éÑùµÄ·½·¨£¬´ÓËùÓÐʦÉúÖгéȡһ¸öÈÝÁ¿Îª150µÄÑù±¾£¬ÒÑÖª´ÓѧÉúÖгéÈ¡µÄÈËÊýΪ135£¬ÄÇô¸ÃѧУµÄ½ÌʦÈËÊýÊÇ£¨¡¡¡¡£©
A£®15B£®200C£®240D£®2160

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺f£¨x£©£¾1ÇÒf£¨x£©+f¡ä£¨x£©£¾1£¬f£¨0£©=5£¬ÆäÖÐf¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£¬Ôò²»µÈʽln[f£¨x£©-1]£¾ln4-xµÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®£¨-¡Þ£¬0£©¡È£¨3£¬+¡Þ£©C£®£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©D£®£¨-¡Þ£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèE£¨X£©=10£¬E£¨Y£©=3£¬ÔòE£¨3X+5Y£©=£¨¡¡¡¡£©
A£®45B£®40C£®30D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©µÄͼÏóÈçͼËùʾ£¬f£¨-1£©=f£¨2£©=3£¬Áîg£¨x£©=£¨x-1£©f£¨x£©£¬Ôò²»µÈʽg£¨x£©¡Ý3x-3µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®[-1£¬1]¡È[2£¬+¡Þ£©B£®£¨-¡Þ£¬-1]¡È[1£¬2]C£®£¨-¡Þ£¬-1]¡È[2£¬+¡Þ£©D£®[-1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Õý·½ÌåÖУ¬M¡¢N·Ö±ðÊÇA1D1¡¢DCµÄÖе㣬
£¨1£©ÇóMNÓëÃæA1BC1Ëù³É½ÇµÄÕýÏÒÖµ£»
£¨2£©MNÓëBC1Ëù³É½Ç£»
£¨3£©¶þÃæ½ÇA-B1D1-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸