精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)定义域为(0,+∞),且满足f(x)+xf′(x)=$\frac{lnx}{x}$,f(e)=$\frac{1}{e}$则下列结论正确的是(  )
A.f(x)有极大值无极小值B.f(x)有极小值无极大值
C.f(x)既有极大值又有极小值D.f(x)没有极值

分析 由题意可得xf(x)=$\frac{1}{2}$(lnx)2+c;再由f(e)=$\frac{1}{e}$可得c=$\frac{1}{2}$,从而可得f(x)=$\frac{1}{2}$•((lnx)2+1)$\frac{1}{x}$;从而再求导判断即可.

解答 解:∵f(x)+xf′(x)=$\frac{lnx}{x}$,
∴[xf(x)]′=$\frac{lnx}{x}$,
∴xf(x)=$\frac{1}{2}$(lnx)2+c;
又∵f(e)=$\frac{1}{e}$,
∴e•$\frac{1}{e}$=$\frac{1}{2}$(lne)2+c;
故c=$\frac{1}{2}$;
故f(x)=$\frac{1}{2}$•((lnx)2+1)$\frac{1}{x}$;
f′(x)=$\frac{\frac{2lnx}{x}•2x-((lnx)^{2}+1)•2}{4{x}^{2}}$
=$\frac{-2(lnx-1)^{2}}{4{x}^{2}}$≤0;
故函数f(x)在(0,+∞)上为减函数,
故f(x)没有极值;
故选D.

点评 本题考查了导数的运算与积分的运算,同时考查了导数的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,\;\;0≤x≤1,\;\\ mx+5,\;\;\;\;\;\;\;\;\;\;x>1.\;\end{array}\right.$若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围为(-5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知φ(x)=x(x-m)2在x=1处取得极小值,且函数f(x),g(x)满足f(5)=2,f′(5)=3m,g(5)=4,g′(5)=m,则函数F(x)=$\frac{f(x)+2}{g(x)}$的图象在x=5处的切线方程为(  )
A.3x-2y-13=0B.3x-2y-13=0或x-2y-3=0
C.x-2y-3=0D.x-2y-3=0或2x+3y-13=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.12B.24C.30D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{x}{x+1},-1<x≤0}\\{x,0<x≤1}\end{array}\right.$与函数g(x)=a(x+1)在(-1,1]上有2个交点,若方程x-$\frac{1}{x}$=5a的解为正整数,则满足条件的实数a有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{sin2x-2{{sin}^2}x}}{sinx}$.
(Ⅰ)求f(x)的定义域及其最大值;
(Ⅱ)求f(x)在(0,π)上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的左、右顶点分别为A,B,F1为左焦点,且|AF1|=2,又椭圆C过点$(0,2\sqrt{3})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P和Q分别在椭圆C和圆x2+y2=16上(点A,B除外),设直线PB,QB的斜率分别为k1,k2,若k1=$\frac{3}{4}{k_2}$,证明:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知区域Ω={(x,y)|$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,区域A={(x,y)|0≤y≤$\frac{1}{2}$e-|x|,x∈[-1,1],在Ω内随机投掷一点M,则点M落在区域A内的概率是(  )
A.$\frac{1}{2}$(1-$\frac{1}{e}$)B.$\frac{1}{4}$(1-$\frac{1}{e}$)C.$\frac{1}{e}$D.1-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F(1,0),过F1的直线l与椭圆C相交于A,B两点,且△ABF2的周长为4$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(4,0)作与直线l平行的直线m,且直线m与抛物线y2=4x交于P、Q两点,若A、P在x轴上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.

查看答案和解析>>

同步练习册答案