精英家教网 > 高中数学 > 题目详情
17.已知区域Ω={(x,y)|$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,区域A={(x,y)|0≤y≤$\frac{1}{2}$e-|x|,x∈[-1,1],在Ω内随机投掷一点M,则点M落在区域A内的概率是(  )
A.$\frac{1}{2}$(1-$\frac{1}{e}$)B.$\frac{1}{4}$(1-$\frac{1}{e}$)C.$\frac{1}{e}$D.1-$\frac{1}{e}$

分析 本题符合几何概型,所以只要分别求出两个区域的面积,利用面积比求概率.

解答 解:由题意,两个区域对应的图形如下,区域Ω是图中边长为2的正方形,区域A是阴影部分,面积为${2∫}_{0}^{1}\frac{1}{2}{e}^{-x}dx$=2($-\frac{1}{2}{e}^{-x}$)${\;}_{0}^{1}$=1-$\frac{1}{e}$,
由几何概型公式可得点M落在区域A内的概率是$\frac{1-\frac{1}{e}}{2×2}=\frac{1}{4}(1-\frac{1}{e})$;
故选B.

点评 本题考查了利用定积分求曲边梯形的面积以及几何概型公式的运用;关键是求出区域A的面积,利用几何概型公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,AB是⊙O的直径,CB与⊙O相切于点B,E为线段BC上一点,连接AC,连接AE,分别交⊙O于D,G两点,连接DG交CB于点F.
(Ⅰ)求证:C,D,E,G四点共圆.;
(Ⅱ)若F为EB的三等分点且靠近E,GA=3GE,求证:CE=EB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)定义域为(0,+∞),且满足f(x)+xf′(x)=$\frac{lnx}{x}$,f(e)=$\frac{1}{e}$则下列结论正确的是(  )
A.f(x)有极大值无极小值B.f(x)有极小值无极大值
C.f(x)既有极大值又有极小值D.f(x)没有极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年3月份全国两会召开后,中国足球引起重视,某校对学生是否喜欢足球进行了抽样调查,男女生各抽了50名,相关数据如下表所示:
不喜欢足球喜欢足球总计
男生183250
女生341650
总计5248100
(1)用分层抽样的方法在喜欢足球的学生中随机抽取6名,男生应该抽取几名?
(2)在上述抽取的6名学生中任取2名,求恰有1名女生的概率.
(3)能否在犯错误的概率不超过0.005的前提下认为性别与喜欢足球有关系?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=sin(x+$\frac{π}{4}$)-sin2x(x∈R)的最大值是.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x、y满足$\left\{\begin{array}{l}{y≤3}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}\right.$,则目标函数z=2x-y的最大值为(  )
A.-4B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若存在直线l与曲线C1和曲线C2都相切,则称曲线C1和曲线C2为“相关曲线”,有下列四个命题:
①有且只有两条直线l使得曲线C1:x2+y2=4和曲线C2:x2+y2-4x+2y+4=0为“相关曲线”;
②曲线C1:y=$\frac{1}{2}\sqrt{{x^2}+1}$和曲线C2:y=$\frac{1}{2}\sqrt{{x^2}-1}$是“相关曲线”;
③当b>a>0时,曲线C1:y2=4ax和曲线C2:(x-b)2+y2=a2一定不是“相关曲线”;
④必存在正数a使得曲线C1:y=alnx和曲线C2:y=x2-x为“相关曲线”.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx,1-$\sqrt{3}$cosx),$\overrightarrow{n}$=(1-sinx,cosx),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\sqrt{3}$.
(Ⅰ)求函数f(x)的零点;
(Ⅱ)若f(α)=$\frac{8}{5}$,且α∈($\frac{π}{2}$,π),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的导函数f′(x)的图象如图所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),则不等式g(x)≥3x-3的解集是(  )
A.[-1,1]∪[2,+∞)B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]

查看答案和解析>>

同步练习册答案