如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。
(1)或;(2).
解析试题分析:(1)通过确定圆心的坐标,求出圆的方程.直线与圆相切常用圆心到直线的距离等于半径,以及要考虑斜率不存在的情况,因为圆外一点可以向圆做两条切线.(2)根据题意.得到一个关于点M的方程,又因为M点也在圆C上,所以两个方程有公共解即通过方程组来解,本题是通过两圆的圆心距小于或等于两圆的半径和也是一样.本题(1)应用求圆的切线方程的常用方法.(2)用方程的思想同时点的存在性通过圆心距与圆的半径的关系来确定,也可以求方程组解的情况与曲线的交点个数方面来理解.
试题解析:(1)由题设点,又也在直线上,
,由题,过A点切线方程可设为,
即,则,解得:,
又当斜率不存在时,也与圆相切,∴所求切线为或,
即或
(2)设点,,,,,,即,又点在圆上,,
点为与的交点,
若存在这样的点,则与有交点,
即圆心之间的距离满足:,
即,
解得:
考点:1.圆的方程.2.圆的切线方程3.开放探究性的问题4.两圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在直线上,且与直线相切于点.
(Ⅰ)求圆方程;
(Ⅱ)点与点关于直线对称.是否存在过点的直线,与圆相交于两点,且使三角形(为坐标原点),若存在求出直线的方程,若不存在用计算过程说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点P(0,5)及圆C:x2+y2+4x-12y+24=0
(I)若直线l过点P且被圆C截得的线段长为4,求l的方程;
(II)求过P点的圆C的弦的中点D的轨迹方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆:.
(Ⅰ)若圆与轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,点A(0,3),直线:,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点A作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com