精英家教网 > 高中数学 > 题目详情

如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,.
(1)当时,求的大小;
(2)求的面积S的最小值及使得S取最小值时的值.

(1)θ=60°;(2)当θ=45°时,S取最小值.

解析试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的DF和DE代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定S的最小值.
在△BDE中,由正弦定理得
在△ADF中,由正弦定理得.   4分
由tan∠DEF=,得,整理得
所以θ=60°.             6分
(2)S=DE·DF=
.  10分
当θ=45°时,S取最小值.     12分
考点:正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元.

(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为M.
(1)求f(x)的解析式;
(2)当x∈时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.(1)求函数的值域;(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的终边过点.
(1)求的值;
(2)若为第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求的值.

查看答案和解析>>

同步练习册答案