精英家教网 > 高中数学 > 题目详情
设项数均为)的数列项的和分别为.已知,且集合=.
(1)已知,求数列的通项公式;
(2)若,求的值,并写出两对符合题意的数列
(3)对于固定的,求证:符合条件的数列对()有偶数对.
(1);(2)时,数列可以为(不唯一)6,12,16,14;2,8,10,4,时,数列对()不存在.(3)证明见解析.

试题分析:(1)这实质是已知数列的前项和,要求通项公式的问题,利用关系来解决;
(2)注意到,从而,又,故可求出,这里我们应用了整体思维的思想,而要写出数列对(),可通过列举法写出;(3)可通过构造法说明满足题意和数列对是成对出现的,即对于数列对(),构造新数列对),则数列对()也满足题意,(要说明的是=且数列不相同(用反证法,若相同,则,又,则有均为奇数,矛盾).
试题解析:(1)时,
时,不适合该式
故,                       4分
(2)



得,=46,=26                                   8分
数列可以为:
① 16,10,8,12;14,6,2,4      ② 14,6,10,16;12,2,4,8
③ 6,16,14,10;4,12,8,2      ④ 4,14,12,16;2,10,6,8
⑤ 4,12,16,14;2,8,10,6      ⑥ 16,8,12,10;14,4,6,2            10分
(3)令)        12分

=,得

=
所以,数列对()与()成对出现。         16分
假设数列相同,则由,得,均为奇数,矛盾!
故,符合条件的数列对()有偶数对。               18分项和的关系;(2)整体思想与列举法;(3)构造法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知是数列项和,且,对,总有,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果数列{}满足 , ...,  ,...,是首项为1,公比为2的等比数列,那么等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

考虑以下数列{an},n∈N*:①ann2n+1;②an=2n+1;③an=ln .其中满足性质“对任意的正整数nan+1都成立”的数列有________(写出所有满足条件的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列满足:对于任意的
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果()那么共有         项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列中,已知对任意正整数,则等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在由二项式系数所构成的杨辉三角形中,
若第行中从左至右第与第个数的比为
的值为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
照此规律,第个等式为         

查看答案和解析>>

同步练习册答案