精英家教网 > 高中数学 > 题目详情
4.已知i为虚数单位,复数z=a+bi(a,b∈R),则“z2≥0”是“b=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 根据充分必要条件的定义分别判断其充分性和必要性即可.

解答 解:b=0时,z=a,z2=a2≥0,是必要条件,
若“z2≥0”,则a2-b2≥0同时2ab=0,推出b=0,是充分条件,
故选:C.

点评 本题考察了充分必要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知条件p:x2-3x-4≤0;条件q:x2-6x+9-m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是m≥4或m≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an},{bn}满足下列条件:an=6•2n-1-2,b1=1,an=bn+1-bn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)比较an与2bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线 C:y2=2px(p>0),过焦点且斜率为1的直线m交抛物线C于A,B两点,以线段AB为直径的圆在y轴上截得的弦长为$2\sqrt{7}$.
(1)求抛物线C的方程;
(2)过点P(0,2)的直线l交抛物线C于F、G两点,交x轴于点D,设$\overrightarrow{PF}={λ_1}\overrightarrow{FD},\overrightarrow{PG}={λ_2}\overrightarrow{GD}$,试问λ12是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在空间四边形ABCD中,点E,F分别是AC,BD的中点AB=CD=6,AB与CD所成的角为60度,则EF的长为$3或3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知2ax2+bx-3a+1≥0,在x∈[-4,4]上恒成立,求5a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正方体ABCD-A1B1C1D1中,设点P在线段CC1上,直线BP与平面A1BD所成的角为α,则sinα的取值范围是(  )
A.[$\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{6}}}{3}$]B.[$\frac{\sqrt{6}}{3}$,1]C.[$\frac{\sqrt{6}}{3}$,$\frac{2\sqrt{2}}{3}$]D.[$\frac{2\sqrt{2}}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的导函数为f′(x),且$f(x)={x^2}f'(\frac{π}{3})+sinx$,则$f'(\frac{π}{3})$=(  )
A.$\frac{3}{6-4π}$B.$\frac{3}{6-2π}$C.$\frac{3}{6+4π}$D.$\frac{3}{6+2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.高三年级为放松紧张情绪更好地迎接高考,故进行足球射门比赛,现甲?乙两个班级各有5名编号为1,2,3,4,5的学生进行射门比赛,每人射10次,射中的次数统计如下表:
学生1号2号3号4号5号
甲班65798
乙班48977
(1)从统计数据看,甲?乙两个班哪个班成绩更稳定(用数字特征说明);
(2)在本次比赛中,从两班中分别任选一个同学,比较两人的射中次数.求甲班同学射中次数高于乙班同学射中次数的概率.

查看答案和解析>>

同步练习册答案