精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|3x+2|,解不等式f(x)<4-|x-1|.

分析 不等式即为|x-1|+|3x+2|<4,讨论当x≥1时,当-$\frac{2}{3}$<x<1时,当x≤-$\frac{2}{3}$时,分别求出解集,再求并集即可.

解答 解:f(x)<4-|x-1|,即为
|x-1|+|3x+2|<4,
当x≥1时,不等式即为x-1+3x+2<4,即x<$\frac{3}{4}$,则x∈∅;
当-$\frac{2}{3}$<x<1时,不等式即为1-x+3x+2<4,即x<$\frac{1}{2}$,则-$\frac{2}{3}$<x<$\frac{1}{2}$;
当x≤-$\frac{2}{3}$时,不等式即为1-x-3x-2<4,即x>-$\frac{5}{4}$,则-$\frac{5}{4}$<x$≤-\frac{2}{3}$.
综上可得,原不等式的解集为(-$\frac{5}{4}$,$\frac{1}{2}$).

点评 本题考查不等式的解法,注意运用零点分区间的方法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)的定义域为R,f(x)的导函数f′(x)的图象如图所示,则下列结论一定成立的是(  )
A.函数f(x)在x=4处取得极值B.f(1)>f(2)
C.函数f(x)的最小值为0D.f(2)-f(1)<f′(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在所有首位不为0的八位数电话号码中,任取一个电话号码,求:
(1)头两位数码都是8的概率;
(2)头两位数码至少有一个不超过8的概率;
(3)头两位数码不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求证:BE=DE;
(Ⅱ)若AB=2$\sqrt{3}$,AE=3$\sqrt{2}$,平面EBD⊥平面ABCD,直线AE与平面ABD所成的角为45°.
(i)试判断在线段AE是否存在点M,使得DM∥平面BEC,并说明理由;(ii)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,BC边上的垂直平分线与BC,AC分别交于点D,M,若$\overrightarrow{AM}•\overrightarrow{BC}$=6,且|$\overrightarrow{AB}$|=2.则|$\overrightarrow{AC}$|=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的图象上在y轴右边的第一个最高点A的坐标为($\frac{π}{12}$,3),和A点相邻的一个对称中心B点的坐标为($\frac{π}{3}$,0).
(1)求f(x)的解析式;
(2)求f(x)在[0,π]上的单增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等比数列{an}中,a1=1,a5=2a4,且前n项和为Sn,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)设cn=(Sn+1)(nbn-λ),若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2≥0}\\{\frac{5}{x+2}>1}\end{array}\right.$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设异面直线a,b所成角为θ,点P为空间一点(P不在直线a,b上),有以下命题
①过点P存在唯一平面与异面直线a,b都平行
②若θ=$\frac{π}{2}$,则过点P且与a,b都垂直的直线有且仅有1条.
③若θ=$\frac{π}{3}$,则过点P且与a,b都成$\frac{π}{3}$直线有且仅有3条.
④若过点P且与a,b都成$\frac{π}{3}$直线有且仅有4条,则θ∈($\frac{π}{3}$,$\frac{π}{2}$).
⑤若过点P且与a,b都成$\frac{π}{3}$直线有且仅有2条,则θ∈($\frac{π}{6}$,$\frac{π}{3}$).
其中正确命题的序号是①②③⑤(请填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案