精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的通项公式为an=2n,则a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=4n+2n

分析 设Sn+1=a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn,倒叙可得:Sn+1=an+1Cnn+${a}_{n}{∁}_{n}^{n-1}$+…+a2Cn1+a1Cn0,相加可得:2Sn+1=(a1+an+1)$({∁}_{n}^{0}+{∁}_{n}^{1}+…+{∁}_{n}^{n})$=(2+2n+1)×2n,即可得出.

解答 解:设Sn+1=a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn
则Sn+1=an+1Cnn+${a}_{n}{∁}_{n}^{n-1}$+…+a2Cn1+a1Cn0
∴2Sn+1=(a1+an+1)$({∁}_{n}^{0}+{∁}_{n}^{1}+…+{∁}_{n}^{n})$=(2+2n+1)×2n
∴Sn+1=(1+2n)×2n=4n+2n
故答案为:4n+2n

点评 本题考查了二项式定理、等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的前n项和为Sn.若S3=7,S6=63.则S9=511.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2sin(2x-\frac{π}{6}),x∈R$
(1)求f(0)的值;
(2)求函数f(x)的最大值,并求f(x)取最大值时x取值的集合;
(3)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=$\frac{2}{3}$,an+1=$\frac{{a}_{n}-2}{2{a}_{n}-3}$(n∈N*). 
(Ⅰ)求证:{$\frac{1}{{a}_{n}-1}$}是等差数列;并求数列{an}的通项an
(Ⅱ)设bn=$\frac{{a}_{n}}{n(2n+3)}$,记数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知cos(13°-α)=$\frac{1}{3}$,则cos(167°+α)-sin2(α+77°)的值(  )
A.$\frac{2}{9}$B.$-\frac{4}{9}$C.$\frac{4}{9}$D.$-\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式-x2-3x+4≥0的解集是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若“函数f(x)=2$\sqrt{3}$sinxcosx+cos2x-m在[0,$\frac{π}{2}$]上有两个零点”是“(m-a)(m-a-$\frac{1}{2}$)<0”的必要不充分条件,则实数a的取值范围是[1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列通项公式表示的数列为等差数列的是(  )
A.an=$\frac{n}{n+1}({n∈{N^*}})$B.an=n2-1(n∈N*C.an=5n+(-1)n(n∈N*D.an=3n-1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$tanα=-\frac{4}{3}$,求
(1)$\frac{sinα+3cosα}{cosα+3sinα}$
(2)1+sin2α+3cosαsinα的值.

查看答案和解析>>

同步练习册答案