精英家教网 > 高中数学 > 题目详情
14.已知a∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,则$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$=(  )
A.$\frac{\sqrt{26}}{4}$B.$\frac{\sqrt{26}}{8}$C.$\frac{\sqrt{13}}{4}$D.$\frac{\sqrt{13}}{8}$

分析 利用已知条件求出tanα的值,然后求解所求表达式的值.

解答 解:α∈(0,$\frac{π}{2}$),且2sin2α-sinαcosα-3cos2α=0,
所以2tan2α-tanα-3=0,解得tanα=$\frac{3}{2}$,tanα=-$\frac{1}{2}$(舍去)
cosα=$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=$\sqrt{\frac{4}{13}}$,
∴$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$=$\frac{\frac{\sqrt{2}}{2}(sinα+cosα)}{2sinαcosα+2co{s}^{2}α}$=$\frac{\sqrt{2}}{4cosα}$=$\frac{\sqrt{2}}{4×\frac{2}{\sqrt{13}}}$=$\frac{\sqrt{26}}{8}$.
故选:B.

点评 本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若(3+x)n展开式的二次项系数的和为256,则n的值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}为等比数列,a1=1,a2=3.
(Ⅰ)求最小的自然数n,使an≥2014;
(Ⅱ)求和:${T_{2n}}=\frac{1}{a_1}-\frac{2}{a_2}+\frac{3}{a_3}-…-\frac{2n}{{{a_{2n}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若A⊆B,求a的取值范围;
(2)若A∩B=∅,求a的取值范围;
(3)若A∩B=(3,4),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{x}^{2}+bx-1}{x}$,且f(1)=0.
(1)求b的值,判断f(x)在(0,+∞)上的单调性并给予证明;
(2)对任意x∈[1,+∞),不等式f(mx)+mf(x)<0恒成立,求实数m的取值范围;
(3)若有常数M,使得对任意的x1∈(a,b),存在唯一的x2∈(a,b)满足$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,则称M为函数f(x)在(a,b)上的“均值”,试求函数f(x)在(1,3)上的“均值”并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分解因式:a2+9b2-6ab-25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,值域为[-2,2]的是(  )
A.f(x)=2x-1B.f(x)=log0.5(x+11)C.f(x)=$\frac{4x}{{x}^{2}+1}$D.f(x)=x2(4-x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x)=$\frac{ax+b}{{x}^{2}+c}$的图象如图所示,则a,b,c的大小关系是(  )
A.a>b>cB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x2+2x+1-sin$\frac{a-b}{3}$π
(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求函数f(x)有零点的概率
(Ⅱ)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求函数f(x)有零点的概率.

查看答案和解析>>

同步练习册答案