精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,则f(27)等于(  )
A.2B.1C.-1D.0

分析 直接利用函数的解析式,代入求解即可.

解答 解:函数f(x)=x${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$x,则f(27)=27${\;}^{\frac{1}{3}}$+log${\;}_{\frac{1}{3}}$27=3-3=0,
故选:D.

点评 本题考查函数在的求法,指数与对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x-lnx+a-1,g(x)=$\frac{x^2}{2}$+ax-xlnx,其中a>0.
(1)求f(x)的单调区间;
(2)当x≥1时,g(x)的最小值大于$\frac{3}{2}$-lna,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若C252x=C25x+4,则x的值为(  )
A.4B.7C.4或7D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若对任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,则实数a的最大值为(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(2)lg25+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是(  )
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线$\frac{x^2}{9}-\frac{y^2}{3}=1$的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\frac{{2}^{x}+1}{{2}^{x+1}-a}$是奇函数.
(1)求a的值;
(2)判断并证明f(x)在(0,+∞)上的单调性.

查看答案和解析>>

同步练习册答案