精英家教网 > 高中数学 > 题目详情
16.设等差数列{an}的前n项和为Sn,且2a5-S4=2,3a2+a6=32.
(I)求数列{an}的通项公式;
(Ⅱ)记${T_n}=\frac{a_1}{2}+\frac{a_2}{4}+…+\frac{a_n}{2^n},n∈{N_+}$,求Tn

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用“错位相减法”、等比数列的通项公式及其前n项和公式即可得出.

解答 解:(Ⅰ)设等差数列的{an}首项为a1,公差为d,
由2a5-S4=2,3a2+a6=32,可知:$\left\{\begin{array}{l}2({a_1}+4d)-(4{a_1}+\frac{4×3}{2}d)=2\\ 3({a_1}+d)+({a_1}+5d)=32\end{array}\right.$,
解得a1=2,d=3.
∴an=3n-1.
(Ⅱ)令${b_n}=\frac{3n-1}{2^n}$,
$\begin{array}{l}∴{S_n}=\frac{2}{2}+\frac{5}{2^2}+\frac{8}{2^3}+…+\frac{3n-1}{2^n}\\ \frac{1}{2}{S_n}={\;}\frac{2}{2^2}+\frac{5}{2^3}+…+\frac{3n-4}{2^n}+\frac{3n-1}{{{2^{n+1}}}}\end{array}$
相减得$\frac{1}{2}{S_n}=1+\frac{3}{2^2}+\frac{3}{2^3}+…+\frac{3}{2^n}-\frac{3n-1}{{{2^{n+1}}}}$,
∴$\frac{1}{2}{S_n}=1+\frac{{\frac{3}{4}[1-{{({\frac{1}{2}})}^{n-1}}]}}{{1-\frac{1}{2}}}-\frac{3n-1}{{{2^{n+1}}}}$=$\frac{5}{2}-\frac{3n+5}{{{2^{n+1}}}}$,
∴${S_n}=5-\frac{{3n{+}5}}{2^n}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.证明:${C}_{n}^{m}$=$\frac{n}{m}$${C}_{n-1}^{m-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x>0}\\{-ax+1,x≤0}\end{array}\right.$,若f(a)+f(2)=0,则实数a的值等于(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F为双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦点,P,Q为C右支上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PFQ的周长为(  )
A.28B.36C.44D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=a2x-2a+1,若命题“?x∈[0,1],f(x)>0”是假命题,则实数a的取值范围为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,a1=0,4Sn=1-an+1,n∈N*
(1)求数列{an}的通项公式;
(2)记bn=(-1)nlog3a2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令${b_n}•{2^{\frac{1}{a_n}}}=\frac{1}{{{a_{2n-1}}}}(n∈N*),{T_n}={b_1}+{b_2}+…+{b_n}$,写出Tn关于n的表达式,并求满足Tn>$\frac{5}{2}$时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在求函数y=x2+$\frac{1}{{x}^{2}+a}(a>0)$的最小值时,某同学的做法如下:由基本不等式得y=x2+$\frac{1}{{x}^{2}+a}={x}^{2}+a+\frac{1}{{x}^{2}+a}-a≥2\sqrt{({x}^{2}+a)\frac{1}{{x}^{2}+a}}$-a=2-a.
因此函数y=x2+$\frac{1}{{x}^{2}+a}$的最小值为2-a.
若该同学的解法正确,则a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|0<x<2},B={x|x2+x-2≥0},则A∩B=(  )
A.(0,1]B.[1,2)C.[-2,2)D.(0,2)

查看答案和解析>>

同步练习册答案