【题目】若存在x0∈[﹣1,1]使得不等式|
﹣a
+1|≤
成立,则实数a的取值范围是 .
【答案】[0,
]
【解析】解:不等式|
﹣a
+1|≤
等价为
≤2,
即|
+
﹣a|≤2,
即﹣2≤
+
﹣a≤2,
即a﹣2≤
+
≤2+a,
设t=
,当x0∈[﹣1,1]是t∈[
,2],
设y=t+
,
则函数在[
,1]上是减函数,在[1,2]上是增函数,
则当t=1时,函数取得最小值y=1+1=2,
当t=2或t=
,函数取得最大值y=
+2=
,
则2≤y≤
,
∵即a﹣2≤y≤2+a,
∴若[a﹣2,a+2]与[2,
]没有公共点,
则a+2<2或a﹣2>
,
即a<0或a>
,
则若[a﹣2,a+2]与[2,
]有公共点,
则0≤a≤
,
所以答案是:[0,
]
【考点精析】根据题目的已知条件,利用特称命题的相关知识可以得到问题的答案,需要掌握特称命题
:
,
,它的否定
:
,
;特称命题的否定是全称命题.
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,设函数f(g(x))有m个零点,函数g(f(x))有n个零点,则m+n等于( )
![]()
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已经集合A={x|(8x﹣1)(x﹣1)≤0};集合C={x|a<x<2a+5}
(1)若
,求实数t的取值集合B;
(2)在(1)的条件下,若(A∪B)C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
;
(1)当
时,若
,求
的取值范围;
(2)若定义在
上奇函数
满足
,且当
时,
,
求
在
上的反函数
;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实
数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a等于( )
A.![]()
B.![]()
C.3
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)当a=1,求函数f(x)的最大值
(2)当a<0,且对任意实数x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m∈R,复数z=
+(m2+2m﹣3)i,当m为何值时,
(1)z∈R;
(2)z是纯虚数;
(3)z对应的点位于复平面第二象限;
(4)(选做)z对应的点在直线x+y+3=0上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com