精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线 的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a等于(
A.
B.
C.3
D.9

【答案】A
【解析】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,
∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,
根据抛物线的焦半径公式得1+ =5,p=8.
∴抛物线y2=16x,
∴M(1,±4),
∵m>0,
∴取M(1,4),
∵双曲线 的左顶点为A(﹣ ,0),
∴AM的斜率为
双曲线 的渐近线方程是
由已知得
解得a=
故选A.
根据抛物线的焦半径公式得1+ =5,p=8.取M(1,4),双曲线 的左顶点为A(﹣a,0),AM的斜率为 ,双曲线 的渐近线方程是 ,由已知得 ,由双曲线一条渐近线与直线AM平行能求出实数a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列式子中成立的是(
A.log 4<log 6
B.( 0.3>( 0.3
C.( 3.4<( 3.5
D.log32>log23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面积;
(2)若BC=2 ,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在x0∈[﹣1,1]使得不等式| ﹣a +1|≤ 成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

温差x(℃)

8

11

12

13

10

发芽数y(颗)

16

25

26

30

23

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注:
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数轴交于两点,点在抛物线上(点在第一象限),.记,梯形面积为

求面积为自变量的函数解析式;

其中为常数且的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为的正方形,平面平面 ,

(Ⅰ)求证: 平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.则下列结论正确的是(
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3
D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理中属于归纳推理且结论正确的是(
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推断:数列{an}的前n项和Sn=n2
B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对?x∈R都成立,推断:f(x)=xcosx为奇函数
C.由圆x2+y2=r2的面积S=πr2 , 推断:椭圆 =1的面积S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推断:对一切n∈N* , (n+1)2>2n

查看答案和解析>>

同步练习册答案