分析 令f(a)=t,则f(t)=2t2,讨论t<1,及t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式或方程即可得到所求范围.
解答 解:令f(a)=t,
则f(t)=2t2,
若t<1时,由f(t)=2t2得3t-1=2t2,即2t2-3t+1=0,得t=1(舍)或t=$\frac{1}{2}$,
当t≥1时,2t2=2t2成立,
即t≥1或t=$\frac{1}{2}$,
若a<1,由f(a)≥1,即3a-1≥1,解得a≥$\frac{2}{3}$,且a<1;此时$\frac{2}{3}$≤a<1,
由f(a)=$\frac{1}{2}$得3a-1=$\frac{1}{2}$得a=$\frac{1}{2}$,满足条件,
若a≥1,由f(a)≥1,即2a2≥1,
∵a≥1,∴此时不等式2a2≥1恒成立,
由f(a)=$\frac{1}{2}$得2a2=$\frac{1}{2}$得a=±$\frac{1}{2}$,不满足条件,
综上$\frac{2}{3}$≤a<1或a≥1.即a≥$\frac{2}{3}$.
综上可得a的范围是a≥$\frac{2}{3}$或a=$\frac{1}{2}$.
故答案为:[$\frac{2}{3}$,+∞)∪{$\frac{1}{2}$}
点评 本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{△-4}{△+4}$ | B. | $\frac{\sqrt{△}-2}{\sqrt{△}+2}$ | C. | $\frac{△+4}{△-4}$ | D. | $\frac{\sqrt{△}+2}{\sqrt{△}-2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com