精英家教网 > 高中数学 > 题目详情
3.点(2,2)关于直线2x-4y+9=0的对称点的坐标是(  )
A.(1,4)B.(1,2)C.(1,-2)D.(1,-4)

分析 设对称点的坐标为(a,b),由对称性可得ab的方程组,解方程组可得.

解答 解:设对称点的坐标为(a,b),
则由对称性可知$\left\{\begin{array}{l}{2•\frac{a+2}{2}-4•\frac{b+2}{2}+9=0}\\{\frac{b-2}{a-2}•\frac{1}{2}=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{b=4}\end{array}\right.$,故对称点坐标为(1,4),
故选:A.

点评 本题考查直线的一般式方程和对称性,涉及垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+lnx-$\frac{{x}^{2}}{x-lnx}$有三个不同的零点x1,x2,x3(其中x1<x2<x3),则(1-$\frac{l{nx}_{1}}{{x}_{1}}$)2(1-$\frac{l{nx}_{2}}{{x}_{2}}$)(1-$\frac{l{nx}_{3}}{{x}_{3}}$)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,若2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|2$\overrightarrow{a}-\overrightarrow{b}$|,cos<$\overrightarrow{a}$,$\overrightarrow{a}+\overrightarrow{b}$)>=$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=xex-ax+a,若存在唯一的整数x0,使得f(x0)<0,则实数a的取值范围是(  )
A.[-$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$)C.[-$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)D.[$\frac{1}{{e}^{2}}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{2{x}^{2},x≥1}\end{array}\right.$,则满足f(f(a))=2(f(a))2的a的取值范围为[$\frac{2}{3}$,+∞)∪{$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}的前n项和为Sn,a4+a5+a6+a7+a8=25,S12=54.
(1)求an
(2)求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}满足an-an+1=anan+1(n∈N*),数列{bn}满足bn=$\frac{1}{{a}_{n}}$,且b1+b2+…+b9=90,则b4•b6(  )
A.最大值为99B.为定值99C.最大值为100D.最大值为200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若cosα=-$\frac{5}{13}$,则sin(π一α)=±$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有小于180°的正角,这个角的9倍角的终边与这个角的终边重合,求这个角的度数.

查看答案和解析>>

同步练习册答案