精英家教网 > 高中数学 > 题目详情
13.有小于180°的正角,这个角的9倍角的终边与这个角的终边重合,求这个角的度数.

分析 利用终边相同的角,通过k的取值求出角的大小.

解答 解:设这个角为α,则9α=k•360°+α,k∈Z,
∴α=k•45°,
又∵0°<α<180°,∴α=45°或90°.

点评 本题考查终边相同角的表示方法以及求解,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.点(2,2)关于直线2x-4y+9=0的对称点的坐标是(  )
A.(1,4)B.(1,2)C.(1,-2)D.(1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知θ满足$\left\{\begin{array}{l}{a\frac{1}{co{s}^{2}θ}-bcosθ=2a}\\{bco{s}^{2}θ-a\frac{1}{cosθ}=2b}\end{array}\right.$ (a,b≠0),那么a、b的关系为a±b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)对任意实数x,都有f(x)≥x,且当x∈[1,3)时,有$f(x)≤\frac{1}{8}{(x+2)^2}$成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)在题(2)的条件下设g(x)=f(x)-$\frac{mx}{2}$,x∈[0,+∞),若g(x)图象上的点都位于直线y=$\frac{1}{4}$的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow{b}$=(-1,2).
(1)若$\overrightarrow{a}$$⊥\overrightarrow{b}$,求$\frac{sinθ-cosθ}{sinθ+cosθ}$的值;
(2)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{6}$,θ∈(0,$\frac{π}{2}$),求sin($θ+\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某台机床加工的1000只产品中次品数的频率分布如表,则次品数的众数、平均数依次为0和5,3.4..
次品数01235
频率0.50.20.050.20.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,椭圆的中心在原点,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于点P,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为($\frac{\sqrt{5}-1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=xn-lnx-1(n∈N*,n≥2).
(1)若n=2,求函数f(x)的极值;
(2)求证:①函数f(x)存在两个零点x1,x2
②x1x2>e${\;}^{\frac{2}{n}-2}$(e为自然对数的底数.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题:
①在一个2×2列联表中,由计算得k2=6.679,则有99%的把握确认这两个变量间有关系.
②随机变量X服从正态分布N(1,2),则P(X<0)=P(x>2);
③若二项式${({x+\frac{2}{x^2}})^n}$的展开式中所有项的系数之和为243,则展开式中x-4的系数是40
④连掷两次骰子得到的点数分别为m,n,记向量$\overrightarrow{a}$=(m,n)与向量$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
⑤若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31;
其中正确命题的序号为①②④⑤.

查看答案和解析>>

同步练习册答案