精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤8}\\{2y-x≤4}\\{x≥0}\\{y≥0}\end{array}\right.$,且z=4y-x的最大值为a,最小值为b,则a+b的值是(  )
A.10B.20C.4D.12

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:由z=4y-x得y=$\frac{1}{4}x+\frac{z}{4}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{4}x+\frac{z}{4}$,
由图象可知当直线y=$\frac{1}{4}x+\frac{z}{4}$,经过点A时,直线y=$\frac{1}{4}x+\frac{z}{4}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x+y=8}\\{2y-x=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即A(4,4).
代入目标函数z=4y-x,
得z=4×4-4=12.即a=12,
经过点C时,直线y=$\frac{1}{4}x+\frac{z}{4}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{y=0}\\{x+y=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=8}\\{y=0}\end{array}\right.$,即C(8,0).
代入目标函数z=4y-x=-8,即B=-8,
则a+b=12-8=4,
故选:C.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x3-x2+mx+2,若对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,则实数m的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin$\frac{α}{8}$=-$\frac{3}{5}$,8π<α<12π,则tan$\frac{α}{4}$=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知g(x)=bx2+cx+1,f(x)=x2+ax-lnx+1,g(x)在x=1处的切线为y=2x.
(1)求b,c的值;
(2)若a=-1,求f(x)的极值;
(3)设h(x)=f(x)-g(x),是否存在实数a,当x∈(0,e](e≈2.718为自然常数)时,函数h(x)的最小值为3,若存在,请求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x-1}{lnx}$.
(Ⅰ)试判断函数y=f(x)在(1,+∞)上的单调性;
(Ⅱ)令an+1=f(an)(n∈N),若a1=$\sqrt{e}$,求证2nlnan≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sinx,x∈(1,3),则使得f′(x)>0的概率为$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知 F1,F2分别是双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点,过 F1,的直线l与双曲线的左右两支分别交于点A,B,若|AB|=|AF2|,∠F1AF2=90°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{6}+\sqrt{3}}}{2}$B.$\sqrt{6}+\sqrt{3}$C.$\frac{{\sqrt{5+2\sqrt{2}}}}{2}$D.$\sqrt{5+2\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图是某几何体的三视图,则该几何体的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b的取值范围.

查看答案和解析>>

同步练习册答案