分析 (Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,可得是f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,进而可得实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,f(x)max-f(x)min≤4,结合二次函数的图象和性质分类讨论,可得实数b的取值范围.
解答 解:(Ⅰ)因为x∈[-1,1],则2+x∈[1,3],
由已知,有对任意的x∈[-1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,
记f(x)max-f(x)min=M,则M≤4.
当|$-\frac{b}{2}$|>1,即|b|>2时,M=|f(1)-f(-1)|=|2b|>4,与M≤4矛盾;
当|$-\frac{b}{2}$|≤1,即|b|≤2时,M=max{f(1),f(-1)}-f($-\frac{b}{2}$)=$\frac{f(1)+f(-1)+|f(1)-f(-1)|}{2}$-f($-\frac{b}{2}$)=(1+$\frac{\left|b\right|}{2}$)2≤4,
解得:|b|≤2,
即-2≤b≤2,
综上,b的取值范围为-2≤b≤2.
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | $\frac{52}{3}$ | C. | $\frac{55}{3}$ | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log2$\frac{3}{2}$ | B. | log23 | C. | 1 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 240 | B. | 180 | C. | 150 | D. | 540 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com