已知数列满足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)记数列的前项和为,求(用含的式子表示).
(1);(2);
(3).
解析试题分析:(1)求数列的某些项,根据题中条件,我们可依次求得;(2)从(1)中特殊值可能看不到数列的项有什么规律,但题中要求,那我们看看能否找到此数列的项之间有什么递推关系呢?把已知条件,代入即得,由这个递推关系可采取累加的方法求得;(3)要求数列的项和,在(2)基础上我们还必须求出偶数项的表达式,这个根据已知易得,由于奇数项与偶数项的表达式不相同,因此在求时,应该采取分组求和的方法,奇数项放在一起,偶数项放在一起,这就引起了分类讨论,要按的奇偶来分类,确定的最后一项是项还是偶数项,这样分组才能明确.
试题解析:(1)(),
(2)由题知,有.
.
∴.
(理)(3)∵,
∴.
∴.
又,
当为偶数时,
.
当为奇数时,
.
综上,有
考点:(1)数列的项;(2)数列的通项公式;(3)数列的前项和与分组求和.
科目:高中数学 来源: 题型:解答题
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。
(1)试写出销售量与n的函数关系式;
(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为kn.
(1)求数列{an}的通项公式;
(2)若bn=2knan,求数列{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com