某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。
(1)试写出销售量与n的函数关系式;
(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?
科目:高中数学 来源: 题型:填空题
已知4个命题:
①若等差数列的前n项和为则三点共线;
②命题:“”的否定是“”;
③若函数在(0,1)没有零点,则k的取值范围是
④是定义在R上的奇函数,的解集为(2,2)
其中正确的是 。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校高一学生1000人,每周一次同时在两个可容纳600人的会议室,开设“音乐欣赏”与“美术鉴赏”的校本课程.要求每个学生都参加,要求第一次听“音乐欣赏”课的人数为,其余的人听“美术鉴赏”课;从第二次起,学生可从两个课中自由选择.据往届经验,凡是这一次选择“音乐欣赏”的学生,下一次会有20﹪改选“美术鉴赏”,而选“美术鉴赏”的学生,下次会有30﹪改选“音乐欣赏”,用分别表示在第次选“音乐欣赏”课的人数和选“美术鉴赏”课的人数.
(1)若,分别求出第二次,第三次选“音乐欣赏”课的人数;
(2)①证明数列是等比数列,并用表示;
②若要求前十次参加“音乐欣赏”课的学生的总人次不超过5800,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:
an-1=,an=(为正整数),
设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn,
求Tn的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在数列中,若(,,为常数),则称为数列.
(1)若数列是数列,,,写出所有满足条件的数列的前项;
(2)证明:一个等比数列为数列的充要条件是公比为或;
(3)若数列满足,,,设数列的前项和为.是否存在
正整数,使不等式对一切都成立?若存在,求出的值;
若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com