精英家教网 > 高中数学 > 题目详情

已知各项均不为零的数列,其前n项和满足;等差数列,且的等比中项
(1)求
(2)记,求的前n项和.

(1);(2).

解析试题分析:(1)通过,然后两式相减得出的递推形式,,不要忘了验证是否满足,从而求出 的通项公式,为等差数列,设,按照这三项成等比数列,可以通过已知建立方程求出,然后求出通项;(2)分类讨论思想,(1)问求出,的通项公式有两个,所以也是两个,其中,第一个通项公式按等比数列的前N项和求解,第二个按错位相减法,列出,再列出q,,求出.运算量比较大.平时要加强训练.此题为中档题.
试题解析:(1)对于数列由题可知    ①
时,           ②
①-②得                1分

                       2分
是以1为首项,以为公比的等比数列
                                 3分
设等差数列的公比为,由题知   4分

,解得
时,;当时,         6分
(2)当时,
                      7分
时,
此时 ③
    ④    8分
③-④得

                       11分
综上:时,时,     12分
考点:1.等差,等比数列的通项公式,性质;2.已知;3.错位相减法求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校高一学生1000人,每周一次同时在两个可容纳600人的会议室,开设“音乐欣赏”与“美术鉴赏”的校本课程.要求每个学生都参加,要求第一次听“音乐欣赏”课的人数为,其余的人听“美术鉴赏”课;从第二次起,学生可从两个课中自由选择.据往届经验,凡是这一次选择“音乐欣赏”的学生,下一次会有20﹪改选“美术鉴赏”,而选“美术鉴赏”的学生,下次会有30﹪改选“音乐欣赏”,用分别表示在第次选“音乐欣赏”课的人数和选“美术鉴赏”课的人数.
(1)若,分别求出第二次,第三次选“音乐欣赏”课的人数
(2)①证明数列是等比数列,并用表示
②若要求前十次参加“音乐欣赏”课的学生的总人次不超过5800,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足().
(1)求的值;
(2)求(用含的式子表示);
(3)(理)记数列的前项和为,求(用含的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)求证:是等比数列,并求的通项公式
(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{bn}满足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2n}是等差数列;
(3)设数列{Tn}满足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在实数pq,对任意n∈N*都有pT1T2T3+…+Tnq成立,试求qp的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为0的等差数列的前3项和=9,且成等比数列
(1)求数列的通项公式和前n项和
(2)设为数列的前n项和,若对一切恒成立,求实数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若等比数列阶“期待数列”,求公比q及的通项公式;
(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为
(i)求证:
(ii)若存在使,试问数列能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,若,点在直线上.
⑴求证:数列是等差数列;
⑵若数列满足,求数列的前项和
⑶设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足 
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

同步练习册答案