分析 根据当n=1时,求得b1=4,写出Tn=(2n+1)•3n-1,Tn-1=(2n-1)•3n-1-1,两式相减求得:
anbn=4(n+1)•3n-1,得到bn=4•3n-1,an=n+1.
解答 解:{anbn}的前n项和Tn=(2n+1)•3n-1,
{bn}是等比数列,公比为q,数列{an}是等差数列,首项a1=2,公差为d,
a1=2,a1b1=3•3-1,b1=4,
∵a1b1+a2b2+a3b3+…+anbn=(2n+1)•3n-1,
a1b1+a2b2+a3b3+…+an-1bn-1=(2n-1)•3n-1-1,
两式相减得:anbn=4(n+1)•3n-1,
∴bn=4•3n-1,an=n+1,
故答案为:an=n+1.
点评 本题考查求等差数列的通项公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{10}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com