精英家教网 > 高中数学 > 题目详情
19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$则目标函数z=$\frac{y+1}{x+3}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

分析 作出不等式组对应的平面区域,利用斜率的几何意义,进行求解即可.

解答 解:作出不等式组对应的平面区域,
z=$\frac{y+1}{x+3}$的几何意义是区域内的点到点D(-3,-1)的斜率,
由图象知AD的斜率最大,
由$\left\{\begin{array}{l}{4x-y+1=0}\\{x-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=5}\end{array}\right.$,即A(1,5),
则z=$\frac{y+1}{x+3}$的最大值z=$\frac{5+1}{1+4}$=$\frac{6}{4}$=$\frac{3}{2}$,
故选:C.

点评 本题主要考查线性规划的应用,根据两点之间的斜率公式以及数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}是等差数列,{bn}是等比数列,若a1=2且数列{anbn}的前n项和是(2n+1)•3n-1,则数列{an}的通项公式是an=n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等比数列,其前n项和为Sn,满足S2+a1=0,a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{-{x}^{2}(x≥0)}\end{array}\right.$,则不等式f[f(x)]≤3的解集为(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若m<0,则直线2mx-m2y-y+3=0的倾斜角的范围是(  )
A.[0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{2}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和${S_n}=-{n^2}+26n$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求a2+a5+a8+…+a3n-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x-y-8≤0}\end{array}\right.$,则;z=y-x最小值是-4,z=$\frac{x}{y+4}$的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从某中学的甲乙两个班中各随机抽取10名同学,分别测量他们的身高(单位:cm),得到身高数据的茎叶图如图所示,若从乙班被抽取的这10名同学中再随机抽取2名身高不低于173cm的同学,则身高为176cm的同学被抽到的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项为正的数列{an}是等比数列,且a1=2,a5=32;数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)在数列{an}的任意相邻两项ak与ak+1之间插入k个(-1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}的前2016项之和.

查看答案和解析>>

同步练习册答案