分析 (1)通过a1=2、a5=32,利用q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$计算可得公比,进而可得结论;
(2)通过a1b1+a2b2+…+anbn=(n-1)•2n+1+2与a1b1+a2b2+…+an-1bn-1=(n-2)•2n+2作差,通过an=2n,进而可得结论;
(3)通过设数列{an}的第k项是数列{cn}的第mk项,通过mk=k+[1+2+…+(k-1)]=$\frac{k(k+1)}{2}$(k≥2),可知c2016=a63、c2015=(-1)62•62b62,利用S2016=(a1+a2+…+a63)+[(-1)1b1+(-1)2•2b2+…+(-1)62•62b62]化简计算即得结论.
解答 解:(1)∵a1=2,a5=32,
∴q=$\root{4}{\frac{{a}_{5}}{{a}_{1}}}$=2,
∴an=2n;
(2)∵a1b1+a2b2+…+anbn=(n-1)•2n+1+2,
∴当n≥2时,a1b1+a2b2+…+an-1bn-1=(n-2)•2n+2,
两式相减得:anbn=(n-1)•2n+1+2-(n-2)•2n+2=n•2n,即bn=$\frac{n•{2}^{n}}{{2}^{n}}$=n(n≥2),
又∵a1b1=2,即b1=1满足上式,
∴bn=n;
(3)设数列{an}的第k项是数列{cn}的第mk项,即ak=${c}_{{m}_{k}}$,
当k≥2时,mk=k+[1+2+…+(k-1)]=$\frac{k(k+1)}{2}$,
∵m62=$\frac{62×63}{2}$=1953,m63=2016,
∴c2016=a63,c2015=(-1)62•62b62,
设Sn表示数列{cn}的前n项之和,
则S2016=(a1+a2+…+a63)+[(-1)1b1+(-1)2•2b2+…+(-1)62•62b62],
其中a1+a2+…+a63=264-2,(-1)nnbn=(-1)nn2,
又∵(2n)2-(2n-1)2=4n-1,
∴(-1)1b1+(-1)2•2b2+…+(-1)62•62b62
=(-1)1+(-1)222+…+(-1)62622
=(22-12)+(42-32)+…+(622-612)
=4(1+2+…+31)-31
=4•$\frac{31(31+1)}{2}$-31
=1953,
∴S2016=264-2+1953=264+1951.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com