精英家教网 > 高中数学 > 题目详情
10.已知数列{an}是等比数列,其前n项和为Sn,满足S2+a1=0,a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn>2016?若存在,求出符合条件的n的最小值;若不存在,说明理由.

分析 (Ⅰ)通过设数列{an}的公比为q,利用2a1+a1q=0及a1≠0可知q=-2,进而通过a3=12可知首项a1=3,计算即得结论;
(Ⅱ)通过(I)、利用等比数列的求和公式计算可知Sn>2016等价于(-2)n<-2015,分n为奇数、偶数两种情况讨论即可.

解答 解:(Ⅰ)设数列{an}的公比为q,
因为S2+a1=0,所以2a1+a1q=0,
因为a1≠0,所以q=-2,
又因为${a_3}={a_1}{q^2}=12$,所以a1=3,
所以${a_n}=3×{(-2)^{n-1}}$;
(Ⅱ)结论:符合条件的n的最小值为11.
理由如下:
由(I)可知${S_n}=\frac{{3×[{1-{{(-2)}^n}}]}}{1-(-2)}=1-{(-2)^n}$,
令Sn>2016,即1-(-2)n>2016,整理得(-2)n<-2015,
当n为偶数时,原不等式无解;
当n为奇数时,原不等式等价于2n>2015,解得n≥11;
综上所述,所以满足Sn>2016的正整数n的最小值为11.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知直线$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=-1+\frac{1}{2}t}\end{array}\right.$(t为参数)与圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ为参数)相交于A、B两点,则|AB|的值是$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若数列{an}满足a1=1,an+1-an=2n-1
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=3,bn+1-bn=2n+3,且cn=$\frac{{a}_{n}•{b}_{n}}{n}$,求数列{cn}的通项公及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设正三棱锥A-BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式为 an=(n-k1)(n-k2),其中k1,k2∈Z:
(1)试写出一组k1,k2∈Z的值,使得数列{an}中的各项均为正数;
(2)若k1=1、k2∈N*,数列{bn}满足bn=$\frac{{a}_{n}}{n}$,且对任意m∈N*(m≠3),均有b3<bm,写出所有满足条件的k2的值;
(3)若0<k1<k2,数列{cn}满足cn=an+|an|,其前n项和为Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、Sn中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足:an+1+2an=0,且a2=2,则{an}前10项和等于(  )
A.$\frac{1-{2}^{10}}{3}$B.-$\frac{1-{2}^{10}}{3}$C.210-1D.1-210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆C内切于扇形AOB,∠AOB=$\frac{π}{3}$,若向扇形AOB内随机投掷300个点,则落入圆内的点的个数估计值为(  )
A.450B.400C.200D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$则目标函数z=$\frac{y+1}{x+3}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{y≥x-1}\\{y≥-\frac{1}{2}x+\frac{5}{2}}\end{array}\right.$且目标函数z=-kx+y,当且仅当x=3,y=2时取得最大值,则实数的k的取值范围是(-∞,1).

查看答案和解析>>

同步练习册答案