精英家教网 > 高中数学 > 题目详情
14.若m<0,则直线2mx-m2y-y+3=0的倾斜角的范围是(  )
A.[0,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{2}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,π)

分析 化直线的一般式方程为斜截式,利用基本不等式求出斜率的范围,则直线倾斜角的范围可求.

解答 解:由2mx-m2y-y+3=0,得$y=\frac{2m}{{m}^{2}+1}x+\frac{3}{{m}^{2}+1}$,
∴直线的斜率k=$\frac{2m}{{m}^{2}+1}=\frac{2}{m+\frac{1}{m}}$,
∵m<0,
∴$m+\frac{1}{m}=-[(-m)+\frac{1}{-m}]≤-2\sqrt{(-m)(-\frac{1}{m})}$=-2.
∴k=$\frac{2}{m+\frac{1}{m}}$∈[-1,0).
设直线2mx-m2y-y+3=0的倾斜角为θ(0≤θ<π),
∴-1≤tanθ<0,则θ∈[$\frac{3π}{4},π$).
故选:D.

点评 本题考查直线的倾斜角,考查了直线的倾斜角和斜率的关系,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线l:y=x+1与函数f(x)=eax+b的图象相切,且f′(1)=e.
(1)求实数a,b的值;
(2)若在曲线y=mf(x)上存在两个不同的点A(x1、mf(x1),B(x2,mf(x2))关于y轴的对称点均在直线l上,证明:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的通项公式为 an=(n-k1)(n-k2),其中k1,k2∈Z:
(1)试写出一组k1,k2∈Z的值,使得数列{an}中的各项均为正数;
(2)若k1=1、k2∈N*,数列{bn}满足bn=$\frac{{a}_{n}}{n}$,且对任意m∈N*(m≠3),均有b3<bm,写出所有满足条件的k2的值;
(3)若0<k1<k2,数列{cn}满足cn=an+|an|,其前n项和为Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、Sn中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆C内切于扇形AOB,∠AOB=$\frac{π}{3}$,若向扇形AOB内随机投掷300个点,则落入圆内的点的个数估计值为(  )
A.450B.400C.200D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求实数a的值;
(2)若A∪B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.$则目标函数z=$\frac{y+1}{x+3}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.“我是歌手”是芒果卫视推出的节目,其中歌手由大众评审打分,已知大众评审有五个年龄层,每组100人,共500人.年龄层分布知如下:
10组:12-19岁
20组:20-29岁
30组:30-39岁
40组:40-49岁
50组:50岁以上
在某歌手演唱完一首民族歌曲后,得票情况如图所示:
已知该歌手共获得了215张选票.
(1)完成2×2列联表:
投票
年龄
合计
10组   
50组   
合计   
(2)判断是否有99%的把握认为投票与否和年龄有关,说明你的理由.(下面的临界值表供参考)
P(x2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,n=n1++n2++n+1+n+2
(3)以上图中投票情况,从20组和40组中随机各抽取1人,求其中投票的人数ξ的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象关于坐标原点中心对称,且在y轴右侧的第一个极值点为x=$\frac{π}{3}$,则函数f(x)的最小正周期为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${(a\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$的展开式中x2的系数为-192,则实数a=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

同步练习册答案