精英家教网 > 高中数学 > 题目详情
8.设△ABC的重心为G,且|GB|+|GC|=4,若|BC|=2,则|GA|的取值范围是$[2\sqrt{3},4)$.

分析 由|BC|=2,可设B(-1,0),C(1,0),即c=1.|GB|+|GC|=4=2a>2=|BC|,可得:点G在椭圆:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,可得|GO|∈$[\sqrt{3},2)$.再利用|GA|=2|GO|,即可得出.

解答 解:∵|BC|=2,∴可设B(-1,0),C(1,0),即c=1.
∵|GB|+|GC|=4=2a>2=|BC|,
∴b2=a2-c2=3.
∴点G在椭圆:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,
∴|GO|∈[b,a),即|GO|∈$[\sqrt{3},2)$.
∵|GA|=2|GO|,
∴|GA|∈$[2\sqrt{3},4)$,
故答案为:$[2\sqrt{3},4)$,

点评 本题考查了椭圆的定义标准方程及其性质、三角形的重心的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)是定义在R上的偶函数,且当x>0时,函数f(x)的解析式为$f(x)=\frac{2}{x}-1$.
(1)求当x<0时函数f(x)的解析式;
(2)用定义证明f(x)在(0,+∞)上的是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设向量$\overrightarrow a$,$\overrightarrow b$为单位向量且夹角为$\frac{π}{3}$,向量$λ\overrightarrow a+\overrightarrow b$与$\overrightarrow a+2\overrightarrow b$垂直,则λ=-$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)是奇函数且满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,则f(2010)+f(2012)=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若(1+x)(1+ax)4的展开式中x2的系数为10,则实数a=1或-$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=ex(x2-4x+1).求:
(1)函数的极值、单调区间;
(2)函数在闭区间[-2,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别
是否需要志愿者
总计
需要30
不需要160
总计200500
(Ⅰ)完成以上2×2列联表,并估计该地区老年人中需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于R上可导的函数f(x),若a>b>1,且有(x-1)f′(x)>0则必有(  )
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的图象经过点P($\frac{π}{12}$,0),图象上与点P最近的一个最高点是Q($\frac{π}{3}$,5)
(1)求函数的解析式,
(2)画出这个函数一个周期内的图象.并求出其递减区间,
(3)若存在x∈($\frac{π}{3}$,$\frac{3π}{4}$)使得f(x)=3,求sin2x的值.

查看答案和解析>>

同步练习册答案