精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}的公比q≠1,则下面说法中不正确的是(
A.{an+2+an}是等比数列
B.对于k∈N* , k>1,ak1+ak+1≠2ak
C.对于n∈N* , 都有anan+2>0
D.若a2>a1 , 则对于任意n∈N* , 都有an+1>an

【答案】D
【解析】解:对于A,{an+2+an}是公比为q2的等比数列,正确;
对于B,对于k∈N* , k>1,ak1+ak+1= +akq,∵q≠1,∴ak1+ak+1≠2ak , 正确‘
对于C,anan+2=an2q2>0,正确;
对于D,若a2>a1 , a>1,则对于任意n∈N* , 都有an+1>an , 故不正确,
故选:D.
【考点精析】利用等比数列的基本性质对题目进行判断即可得到答案,需要熟知{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,点M是AB的中点,则直线DB1与MC所成角的余弦值为(
A.﹣
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为16为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y与月处理量x之间的函数关系可近似地表示为

且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿

1当x[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?

2该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)在边长为1的正方形ABCD内任取一点M,求事件“|AM|≤1”的概率;
(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x、y,统计出两数能与1构成锐角三角形的三边长的数对(x,y)共有12对,请据此估计π的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|.
(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.
(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分为16已知函数

1,求函数的极值,并指出极大值还是极小值;

2,求函数上的最值;

3,求证:在区间上,函数的图象在的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 =1与直线y=2x+m有两个交点,则m的取值范围是(
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”.则抽取的100名观众中“体育迷”有名.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)已知函数

1)若函数上单调递增,求实数的取值范围;

2)若直线是函数图象的切线,求的最小值;

3)当时,若的图象有两个交点,求证: .(取,取,取

查看答案和解析>>

同步练习册答案