【题目】已知函数 (是自然对数的底数)
(1)求证:
(2)若不等式在上恒成立,求正数的取值范围.
【答案】(1)见证明; (2)
【解析】
(1)要证ex≥x+1,只需证f(x)=ex﹣x﹣1≥0,求导得f′(x)=ex﹣1,利用导数性质能证明ex≥x+1.
(2)不等式f(x)>ax﹣1在x∈[,2]上恒成立,即a在x∈[]上恒成立,令g(x),x∈[],利用导数性质求g(x)在x∈[]上的最小值,由此能求出正数a的取值范围.
(1)由题意知,要证,只需证,
求导得,当时,,
当时,,
∴f(x)在是增函数,在时是减函数,
即在时取最小值,
∴,即,
∴.
(2)不等式在上恒成立,即在上恒成立,
亦即在x∈[,2]上恒成立,令g(x)=,,
以下求在上的最小值,
,当时,,
当]时,,
∴当]时,单调递减,当]时,单调递增,
∴在处取得最小值为,
∴正数a的取值范围是.
科目:高中数学 来源: 题型:
【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2012~2018.
(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量.
参考数据:,,,.
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用
A.一次函数B.二次函数
C.指数型函数D.对数型函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2BC,P是线段AB中点,平面ABCD.
(1)求证:平面EPC;
(2)问在EP上是否存在点F,使平面平面BFC?若存在,求出的值;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为9万元时,销售收入y的值.
注:①参考公式:线性回归方程系数公式;
②参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com