精英家教网 > 高中数学 > 题目详情
19.若$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),求$\overrightarrow{a}$$•\overrightarrow{b}$.

分析 根据题意,设$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),由$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的坐标,可得$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=2}\\{{y}_{1}+{y}_{2}=-8}\end{array}\right.$且$\left\{\begin{array}{l}{{x}_{1}-{x}_{2}=-8}\\{{y}_{1}-{y}_{2}=16}\end{array}\right.$,解可得向量$\overrightarrow{a}$与$\overrightarrow{b}$的坐标,进而由数量积的坐标计算公式计算可得答案.

解答 解:根据题意,设$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),
若$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),
则有$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=2}\\{{y}_{1}+{y}_{2}=-8}\end{array}\right.$且$\left\{\begin{array}{l}{{x}_{1}-{x}_{2}=-8}\\{{y}_{1}-{y}_{2}=16}\end{array}\right.$;
解可得$\left\{\begin{array}{l}{{x}_{1}=-3}\\{{y}_{1}=4}\end{array}\right.$且$\left\{\begin{array}{l}{{x}_{2}=5}\\{{y}_{2}=-12}\end{array}\right.$,
即$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(5,-12),
则$\overrightarrow{a}$•$\overrightarrow{b}$=(-3)×5+4×(-12)=-63;
故$\overrightarrow{a}$•$\overrightarrow{b}$=-63.

点评 本题考查向量的坐标运算,注意先由向量的坐标运算求出向量$\overrightarrow{a}$与$\overrightarrow{b}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x2-ax,g(x)=|x-a|,其中a为实数.
(I)若f(x)+g(x)是偶函数,求实数a的值;
(Ⅱ)设t∈R,若?a∈[0,3],对?x∈[0,3],都有f(x)+l≥tg(x)成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z满足z•$\overline{z}$+z+$\overline{z}$=17,则|z+2-i|的最小值为(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.4$\sqrt{2}$D.5$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若(x-a)2($\frac{1}{x}$-1)4的展开式中常数项为15,则a的值为-9或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥平面BEC,EC⊥CB.已知BC=2AD=2AB=2.
(I)证明:BD⊥平面DEC;
(Ⅱ)若EC=1,求AD与面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{bn}满足bn=2bn-1+n(n=2,3,…).
(Ⅰ)若{bn}是等差数列,求数列{bn}的通项公式;
(Ⅱ)若b1=1时,求数列{bn}的通项公式与前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是奇函数,当x≥0时,f(x)=x(1-x),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等差数列110,116,122,…,则大于450而不大于602的各项之和为13702.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果在两个平面内各有一条直线,这两条直线互相平行,那么两个平面的位置关系是相交或平行.

查看答案和解析>>

同步练习册答案