分析 (I)分别令n=1,2,3计算;
(II)先验证n=1猜想成立,假设n=k猜想成立推导n=k+1猜想成立.
解答 解:(Ⅰ)S1=T1=2,S2=T2=12,S3=T3=120;
(Ⅱ)猜想:Sn=Tn(n∈N*),
证明:(1)当n=1时,S1=T1;
(2)假设当n=k(k≥1且k∈N*)时,Sk=Tk,
即(k+1)(k+2)…(k+k)=2k×1×3×…(2k-1),
则当n=k+1时Sk+1=(k+1+1)(k+1+2)…(k+1+k-1)(k+1+k)(k+1+k+1)
=(k+2)(k+3)…(2k)(2k+1)(2k+2)
=$\frac{{{2^k}×1×3×…(2k-1)}}{k+1}×(2k+1)(2k+2)$
=2k+1×1×3×…(2k-1)(2k+1)=Tk+1.
即n=k+1时也成立,
由(1)(2)可知n∈N*,Sn=Tn成立.
点评 本题考查了数学归纳法证明,属于中档题.
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 1.3 | 1.9 | 2.5 | 2.7 | 3.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤-3 | B. | a≥-3 | C. | a≤5 | D. | a≥5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{4}$,$\frac{π}{2}$) | B. | ($\frac{π}{2}$,π) | C. | (-$\frac{π}{2}$,-$\frac{π}{4}$) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份x | 1 | 2 | 3 | 4 | 5 |
| 住宅价格y 千元/平米 | 4.8 | 5.4 | 6.2 | 6.6 | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com