精英家教网 > 高中数学 > 题目详情

【题目】设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=的a的值,并求此时函数的最大值.

【答案】见解析

【解析】 令cosx=t,t∈[-1,1],

则y=2t2-2at-(2a+1)

=2(t-)2-2a-1,

关于t的二次函数的对称轴是t=

<-1,即a<-2时,

函数y在t∈[-1,1]上是单调递增,

所以f(a)=f(-1)=1≠

>1,即a>2时,

函数y在t∈[-1,1]上是单调递减,

所以f(a)=f(1)=-4a+1=

解得a=,这与a>2矛盾;

当-1≤≤1,即-2≤a≤2时,

f(a)=--2a-1=

即a2+4a+3=0,解得a=-1或a=-3,

因为-2≤a≤2,所以a=-1.

所以y=2t2+2t+1,t∈[-1,1],所以当t=1时,

函数取得最大值ymax=2+2+1=5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在极坐标系中点C的极坐标为.

(1)求出以点C为圆心,半径为2的圆的极坐标方程(写出解题过程)并画出图形;

(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数①f(x)=4x+-5,②f(x)=|log2 x|-(x,③f(x)=cos(x+2)-cosx,判断如下两个命题的真假:

命题甲:f(x)在区间(1,2)上是增函数;

命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.

能使命题甲、乙均为真的函数的序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.

(1)求抛物线的方程;

(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函数g(x)的极大值;

(2)求证:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a1|+|a2|+|a3|+|a4|+|a5|=32

α,β,γ是三个不同的平面,则“γα,γβ”是“αβ”的充分条件

已知sin,则cos.其中正确命题的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3x2x(0<a<1,x∈R).若对于任意的三个实数x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形中,的中点,的交点,将沿折起到的位置,如图乙.

)证明:平面

)若平面平面,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.若的一个零点附近的函数值如下所示,请用二分法求出方程的一个正实数解的近似值(精确度0.1)..

查看答案和解析>>

同步练习册答案