精英家教网 > 高中数学 > 题目详情
8.直线l的方程:$\left\{\begin{array}{l}{x=1-tsin25°}\\{y=2+tcos25°}\end{array}\right.$(t为参数),那么直线l的倾斜角为(  )
A.25°B.65°C.115°D.155°

分析 由直线方程,消去参数t化为y=-tan65°(x-3),即可得出.

解答 解:直线$\left\{\begin{array}{l}{x=1-tsin25°}\\{y=2+tcos25°}\end{array}\right.$(t为参数),
消去参数t化为y=-tan65°(x-1)+2,
∴直线的倾斜角为180°-65°=115°.
故选:C.

点评 本题考查了直线的参数方程、倾斜角与斜率的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见表,则在犯错误的概率不超过0.005的前提下推断实验效果与教学措施.P(k2>7.879)≈0.005(  )
优、良、中总计
实验班48250
对比班381250
总计8614100
A.有关B.无关C.关系不明确D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R).
(Ⅰ)讨论f(x)在(0,+∞)上的单调性;
(Ⅱ)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a>e成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α是第三象限角,sinα=-$\frac{1}{3}$,则cotα=(  )
A.$\frac{{\sqrt{2}}}{4}$B.-2$\sqrt{2}$C.-$\frac{{\sqrt{2}}}{4}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象.
(Ⅰ)求φ的值及函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为1,则异面直线A1C1与AB1间的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知公差为正数的等差数列{an}满足a1=1,2a1,a3-3,a4+5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知θ∈($\frac{3π}{2}$,2π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-ax2+3x+6,若x=3是f(x)的一个极值点,求f(x)在[0,a]上的最值.

查看答案和解析>>

同步练习册答案