精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x3-ax2+3x+6,若x=3是f(x)的一个极值点,求f(x)在[0,a]上的最值.

分析 先求导,再根据f′(3)=0,求得a=5,再根据导数求出函数极值,和端点值,求出最值即可.

解答 解:∵f(x)=x3-ax2+3x+6.
∴f′(x)=3x2-2ax+3.
由题意有f′(3)=0,解得a=5,
故f(x)=x3-5x2+3x+6,
∴f′(x)=3x2-10x+3.
令 f′(x)=0,解得 x=$\frac{1}{3}$或x=3∈[0,5],
易知f(x)在区间[$\frac{1}{3}$,3]上单调递减,在[0,$\frac{1}{3}$),[3,5]上单调递增,
而f(0)=6,f(3)=-3,
f(5)=21,f($\frac{1}{3}$)=7-$\frac{14}{27}$,
故f(x)在区间[0,5]上的最大值为21,最小值为-3

点评 本题考查函数与导函数的关系,函数的单调性与导数的关系,通过函数的导数求解函数极值,考查转化思想与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.直线l的方程:$\left\{\begin{array}{l}{x=1-tsin25°}\\{y=2+tcos25°}\end{array}\right.$(t为参数),那么直线l的倾斜角为(  )
A.25°B.65°C.115°D.155°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于(  )
A.$\sqrt{13}$B.$\sqrt{14}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={-3,-2,-1,0,1,2,3},集合E={x|x2-3x+2=0,x∈R},F={x|cos$\frac{πx}{2}$=0,x∈R},则(∁UE)∩F=(  )
A.{-3,-1,0,3}B.{-3,-1,3}C.{-3,-1,1,3}D.{-3,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥BC.
(1)求证:OE⊥FC;
(2)设AF=1,AC=$\sqrt{3}$,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的底面半径为R,高为2R,在它的所有内接圆柱中,侧面积的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=e2x+x2-ax-2.
(1)当a=2时,求函数f(x)的极值;
(2)若g(x)=f(x)-x2+2,且g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn,且a1=3,${a_n}=2{S_{n-1}}+{3^n}$(n∈N*且n≥2),则数列{an}的通项公式为an=(2n+1)•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$处取最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,
(1)求函数f(x)的解析式;
(2)设x∈[0,$\frac{π}{2}$],f(x)求的值域.

查看答案和解析>>

同步练习册答案