| A. | $\frac{1}{4}π{R^2}$ | B. | $\frac{1}{2}π{R^2}$ | C. | πR2 | D. | 2πR2 |
分析 设内接圆柱的底面半径为r,高为h,侧面积S=2πr•h;利用相似三角形,求出圆柱半径r与高h的关系,利用基本不等式即可求最大值.
解答 解:(如图)由题意可知:OS=2R,OC=R,内接圆柱的底面半径为OA=r,
AB=h.
∵△SOC∽△ABC
∴$\frac{OS}{OC}=\frac{AB}{AC}$
AC=R-r.
则有:$\frac{2R}{R}=\frac{h}{R-r}$
∴h=2R-2r
那么:圆柱侧面积S=2πr•h=π•2r•(2R-2r)$≤π(\frac{2r+2R-2r}{2})^{2}$=πR2
故选C
点评 本题考查了圆锥内接圆柱的问题,找到圆柱与圆锥的尺寸关系是解决本题的关键.同时考查了基本不等式的运用.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{-{x^3}}$与$g(x)=x\sqrt{-x}$ | B. | $f(x)=\frac{(2x-1)(x-2)}{x-2}$与g(x)=2x-1 | ||
| C. | f(x)=x0与g(x)=1 | D. | f(x)=x2-2x-1与g(t)=t2-2t-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{3}$i | B. | -1-$\sqrt{3}$i | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}=\frac{1}{n}$ | B. | ${a_n}=\frac{1}{n+1}$ | C. | an=n | D. | ${a_n}=\frac{1}{2n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com