精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x${\;}^{\frac{1}{3}}$+x3为(  )
A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数

分析 容易看出f(x)的定义域为R,关于原点对称,并容易得出f(-x)=-f(x),从而便可得出f(x)为奇函数.

解答 解:f(x)的定义域为R,且$f(-x)=(-x)^{\frac{1}{3}}+(-x)^{3}$=$-{x}^{\frac{1}{3}}-{x}^{3}$=-f(x);
∴f(x)为奇函数.
故选A.

点评 考查奇函数的定义及根据定义判断函数奇偶性的方法和过程,以及有理数指数幂的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了完成销售任务,甲、乙两家服装店在本月最后一天举行大型优惠促销活动,现将两家服装店该日8个时段的成交量(单位:件)统计如表所示:
6791222201514
89112122191516
(Ⅰ)根据以上数据,绘制甲、乙两家服装店该日8个时段成交量的茎叶图;
(Ⅱ)现从乙店的成交量小于16的数据中随机抽取两个,求至少有一个数据小于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)求圆C的直角做标方程;
(Ⅱ)圆C的圆心为C,点P为直线l上的动点,求|PC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆F1:(x+1)2+y2=16及点F2(1,0),在圆F1任取一点M,连接MF2并延长交圆F1于点N,连接F1N,过F2作F2P∥MF1交NF1于P,如图所示.若从F2点引一条直线l交轨迹P于A,B两点,变化直线l (l的斜率一直存在),则$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值(  )
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于(  )
A.$\sqrt{13}$B.$\sqrt{14}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn,则S${\;}_{{2}^{2016}-1}$=$\frac{{{4^{2016}}-1}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集U={-3,-2,-1,0,1,2,3},集合E={x|x2-3x+2=0,x∈R},F={x|cos$\frac{πx}{2}$=0,x∈R},则(∁UE)∩F=(  )
A.{-3,-1,0,3}B.{-3,-1,3}C.{-3,-1,1,3}D.{-3,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的底面半径为R,高为2R,在它的所有内接圆柱中,侧面积的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某人经营一个抽奖游戏,顾客花费2元钱可购买一次游戏机会,每次游戏中,顾客从装有1个黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖,顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a元、10元、5元、1元,若经营者将顾客摸出的3个球的颜色情况分成以下类别:A:1个黑球2个红球;B:3个红球;C:恰有1个白球;D:恰有2个白球;E:3个白球.且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.
(1)请写出一至四等奖分别对应的类别(写出字母即可);
(2)若经营者不打算在这个游戏的经营中亏本,求a的最大值;
(3)若a=50,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

同步练习册答案