精英家教网 > 高中数学 > 题目详情
2.已知圆F1:(x+1)2+y2=16及点F2(1,0),在圆F1任取一点M,连接MF2并延长交圆F1于点N,连接F1N,过F2作F2P∥MF1交NF1于P,如图所示.若从F2点引一条直线l交轨迹P于A,B两点,变化直线l (l的斜率一直存在),则$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值(  )
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

分析 由题意可得$\frac{P{F}_{2}}{M{F}_{1}}=\frac{PN}{{F}_{1}N}$,得$\frac{P{F}_{2}}{4}=\frac{4-P{F}_{1}}{4}$,即PF1+PF2=4>F1F2=2,由此说明点P的轨迹为椭圆,求出椭圆方程,在设lAB为:y=k(x-1),联立直线方程和椭圆方程,化为关于x的一元二次方程,然后利用根与系数的关系求得答案.

解答 解:∵F2P∥MF1,∴$\frac{P{F}_{2}}{M{F}_{1}}=\frac{PN}{{F}_{1}N}$,得$\frac{P{F}_{2}}{4}=\frac{4-P{F}_{1}}{4}$,则PF1+PF2=4>F1F2=2,
∴点P的轨迹是以F1,F2为焦点,长轴长2a=4的椭圆,其轨迹方程为$\frac{x2}{4}$+$\frac{y2}{3}$=1.
设lAB为:y=k(x-1),联立$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,可得:(3+4k2)x2-8k2x+4k2-12=0,
不妨设A(x1,y1),B(x2,y2) (x2<1<x1),
则${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{3+4{k}^{2}},{x}_{1}{x}_{2}=\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∴$\frac{1}{|{F}_{2}A|}+\frac{1}{|{F}_{2}B|}=\frac{1}{\sqrt{1+{k}^{2}}|{x}_{1}-1|}+\frac{1}{\sqrt{1+{k}^{2}}|{x}_{2}-1|}$
=$\frac{1}{\sqrt{1+{k}^{2}}}(\frac{1}{{x}_{1}-1}+\frac{1}{1-{x}_{2}})=\frac{1}{\sqrt{1+{k}^{2}}}•\frac{{x}_{1}-{x}_{2}}{{x}_{1}+{x}_{2}-{x}_{1}{x}_{2}-1}$
=$\frac{1}{\sqrt{1+{k}^{2}}}•\frac{\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}}{{x}_{1}+{x}_{2}-{x}_{1}{x}_{2}-1}$=$\frac{1}{\sqrt{1+{k}^{2}}}•\frac{\sqrt{(\frac{8{k}^{2}}{3+4{k}^{2}})^{2}-4•\frac{4{k}^{2}-12}{3+4{k}^{2}}}}{\frac{8{k}^{2}}{3+4{k}^{2}}-\frac{4{k}^{2}-12}{3+4{k}^{2}}-1}$=$\frac{1}{\sqrt{1+{k}^{2}}}•\frac{\frac{12\sqrt{1+{k}^{2}}}{3+4{k}^{2}}}{\frac{9}{3+4{k}^{2}}}$
=$\frac{12}{9}$=$\frac{4}{3}$.综上可知,变化直线l,则$\frac{1}{|F2A|}$+$\frac{1}{|F2B|}$为定值$\frac{4}{3}$.
故选:A.

点评 本题考查椭圆方程的求法,考查了椭圆的简单性质,训练了直线与椭圆位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.现有3个人去参加某娱乐活动,该活动有甲乙两个游戏可供参加之选择,为增加趣味项,约定:每个人通过投掷一枚质地均匀的骰子决定自已去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X、Y分别表示着4个人中取参加甲乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正方体ABCD-A1B1C1D1的棱长为1,则异面直线A1C1与AB1间的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若奇函数f(x)=x2•sinx+c-3的定义域为[a+2,b](b>a+2),则a+b+c=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知θ∈($\frac{3π}{2}$,2π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足:当sinx≤cosx时,f(x)=cosx,当sinx>cosx时,f(x)=sinx,给出以下结论:
①f(x)的最小值为-1;
②f(x)是周期函数;
③当且仅当x=2kπ(k∈Z)时,f(x)取最小值;
④当且仅当2kπ-$\frac{π}{2}$<x<(2k+1)π(k∈Z)时,f(x)>0;
⑤f(x)的图象上相邻最低点的距离是2π.
其中正确的结论序号是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x${\;}^{\frac{1}{3}}$+x3为(  )
A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列各组函数是同一函数的是(  )
A.$f(x)=\sqrt{-{x^3}}$与$g(x)=x\sqrt{-x}$B.$f(x)=\frac{(2x-1)(x-2)}{x-2}$与g(x)=2x-1
C.f(x)=x0与g(x)=1D.f(x)=x2-2x-1与g(t)=t2-2t-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通项公式可能为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_n}=\frac{1}{2n}$

查看答案和解析>>

同步练习册答案